De Novo Hypertension

From HumanResearchWiki

Contents

1 Introduction
2 Clinical Priority and Clinical Priority Rationale by Design Reference Mission
3 Initial Treatment Steps During Space Flight
4 Capabilities Needed for Diagnosis
5 Capabilities Needed for Treatment
6 Associated Gap Reports
7 Other Pertinent Documents
8 List of Acronyms
9 References
10 Last Update

Introduction

Hypertension is the clinical term used to describe persistent high blood pressure which, if left untreated, is a risk factor for stroke, heart disease, kidney failure and other disorders. De novo hypertension can be caused by endocrine conditions, obesity, pregnancy, and certain medications.

There is a low probability that new-onset hypertension or worsening of a pre-existing well-controlled hypertension could occur on a long-duration mission. Signs of de novo hypertension may be challenging to detect in microgravity due to the resulting reduced blood volume, lower blood pressure, and slower heart rate.[1] Should hypertension occur on orbit, treatment would include beta blockers and calcium channel blockers. Treatment assumes that the supply of these medications is sufficient for continuous administration.

Clinical Priority and Clinical Priority Rationale by Design Reference Mission

One of the inherent properties of space flight is a limitation in available mass, power, and volume within the space craft. These limitations mandate prioritization of what medical equipment and consumables are manifested for the flight, and which medical conditions would be addressed. Therefore, clinical priorities have been assigned to describe which medical conditions will be allocated resources for diagnosis and treatment. “Shall” conditions are those for which diagnostic and treatment capability must be provided, due to a high likelihood of their occurrence and severe consequence if the condition were to occur and no treatment was available. “Should” conditions are those for which diagnostic and treatment capability should be provided if mass/power/volume limitations allow. Conditions were designated as “Not Addressed” if no specific diagnostic and/or treatment capability are expected to be manifested, either due to a very low likelihood of occurrence or other limitations (for example, in medical training, hardware, or consumables) that would preclude treatment. Design Reference Missions (DRMs) are proposed future missions designated by a set of assumptions that encompass parameters such as destination, length of mission, number of crewmembers, number of Extravehicular Activities (EVAs), and anticipated level of

<table>
<thead>
<tr>
<th>Design Reference Mission</th>
<th>Clinical Priority</th>
<th>Clinical Priority Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunar sortie mission</td>
<td></td>
<td>Assumptions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 crewmembers (3 males, 1 female)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 days total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 EVAs/crewmember</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level of Care 3</td>
</tr>
<tr>
<td></td>
<td>Not Addressed</td>
<td>Given the extensive pre-flight medical screening astronauts undergo, it is highly unlikely that a crewmember will develop hypertension that would necessitate pharmacological treatment during a lunar sortie mission. This condition is therefore not specifically addressed by the medical kit.</td>
</tr>
<tr>
<td>Lunar outpost mission</td>
<td></td>
<td>Assumptions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 crewmembers (3 males, 1 female)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 days total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 EVAs/crewmember</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level of Care 4</td>
</tr>
<tr>
<td></td>
<td>Should</td>
<td>Despite the extensive pre-flight medical screening astronauts undergo, it is possible that new-onset hypertension or worsening of a pre-existing, well-controlled hypertension could occur during a lunar outpost mission. Thus, pharmacological treatment should be manifested if mass and volume allow. Beta blockers and calcium channel blockers will already be manifested for other conditions (arrhythmias, chest pain), so some treatment capability will already be present.</td>
</tr>
<tr>
<td>Near-Earth Asteroid (NEA) mission</td>
<td></td>
<td>Assumptions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 crewmembers (2 males, 1 female)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>395 days total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 EVAs/crewmember</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level of Care 5</td>
</tr>
<tr>
<td></td>
<td>Should</td>
<td>Despite the extensive preflight medical screening astronauts undergo, it is possible that new-onset hypertension or worsening of a pre-existing, well-controlled hypertension could occur during a NEA mission. Thus, pharmacological treatment should be manifested if mass and volume allow. Beta blockers and calcium channel blockers will already be manifested for other conditions (arrhythmias, chest pain), so some treatment capability will already be present. Selecting out crewmembers with existing hypertension will further lower the risk.</td>
</tr>
</tbody>
</table>

Initial Treatment Steps During Space Flight

A link is provided to a prior version of the International Space Station (ISS) Medical Checklist, which outlines the initial diagnostic and treatment steps recommended during space flight for various conditions which may be encountered onboard the ISS. Further diagnostic and treatment procedures beyond the initial steps outlined in the Medical Checklist are then recommended by the ground-based Flight Surgeon, depending on the clinical scenario. Please note that this version does not represent current diagnostic or treatment capabilities available on the ISS. While more recent versions of this document are not accessible to the general public, the provided version of the checklist can still provide a general sense of how medical conditions are handled in the space flight environment. Medical Checklists will be developed for exploration missions at a later point in time.

Please note this file is over 20 megabytes (MB) in size, and may take a few minutes to fully download.

ISS Medical Checklist (http://www.nasa.gov/centers/johnson/pdf/163533main_ISS_Med_CL.pdf)

Capabilities Needed for Diagnosis

The following is a hypothetical list of capabilities that would be helpful in diagnosis. It does not necessarily represent the current capabilities available onboard current spacecraft or on the ISS, and may include capabilities that are not yet feasible in the space flight environment.

- Vital sign measurement capability (blood pressure, pulse, respiratory rate, and pulse oximetry, as required per the patient's clinical state)
- Auscultation device (such as a stethoscope)
- Urine analysis
- Blood analysis
- Ophthalmoscope
- Fundus imaging capability (such as a camera)
- Dilating eye drops
- Imaging (such as chest X-ray and ultrasound)
- Electrocardiograph (ECG) (12-lead ECG)

Capabilities Needed for Treatment

The following is a hypothetical list of capabilities that would be helpful in treatment. It does not necessarily represent the current capabilities available onboard current spacecraft or on the ISS, and may include capabilities that are not yet feasible in the space flight environment.

- Antihypertensives

Associated Gap Reports

The NASA Human Research Program (HRP) identifies gaps in knowledge about the health risks associated with human space travel and the ability to mitigate such risks. The overall objective is to identify gaps critical to human space missions and close them through research and development. The gap reports that are applicable to this medical condition are listed below. A link to all of the HRP gaps can be found here (http://humanresearchroadmap.nasa.gov/Gaps/).

1.01 - We do not know which emerging technologies are suitable for preflight medical screening for exploration missions.
2.01 - We do not know the quantified health and mission outcomes due to medical events during exploration missions.
3.01 - We do not know the optimal training methods for in-flight medical conditions identified on the Exploration Medical Condition List taking into account the crew medical officer’s clinical background. (Closed)
4.01 - We do not have the capability to provide a guided medical procedure system that integrates with the medical system during exploration missions.
4.02 - We do not have the capability to provide non-invasive medical imaging during exploration missions.
4.05 - We do not have the capability to measure laboratory analytes in a minimally invasive manner during exploration missions.
4.14 - We do not have the capability to track medical inventory in a manner that integrates securely with the medical system during exploration missions.
4.15 - Lack of medication usage tracking system that includes automatic time stamping and crew identification
4.17 - We do not have the capability to package medications to preserve stability and shelf-life during exploration missions.
4.19 - We do not have the capability to monitor physiological parameters in a minimally invasive manner during exploration missions.
4.23 - We do not have the capability to auscultate, transmit, and record body sounds during exploration missions.
4.24 - Lack of knowledge regarding the treatment of conditions on the Space Medicine Exploration Medical Condition List in remote, resource poor environments (Closed)
5.01 - We do not have the capability to comprehensively manage medical data during exploration missions.

Other Pertinent Documents

List of Acronyms

<table>
<thead>
<tr>
<th>D</th>
<th>Design Reference Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EMCL</td>
<td>Exploration Medical Condition List</td>
</tr>
<tr>
<td>EVA</td>
<td>Extravehicular Activity</td>
</tr>
<tr>
<td>H</td>
<td>Human Research Program</td>
</tr>
</tbody>
</table>

De Novo Hypertension

International Space Station

Megabyte

Magnetic Resonance Imaging

Not Applicable

National Aeronautics and Space Administration

Near Earth Asteroid

References

Last Update

This topic was last updated on 8/14/2014 (Version 2).

Category: Medical Conditions

- This page was last modified on 12 August 2014, at 14:55.