Stroke

From HumanResearchWiki

Contents

- 1 Introduction
- 2 Clinical Priority and Clinical Priority Rationale by Design Reference Mission
- 3 Initial Treatment Steps During Space Flight
- 4 Capabilities Needed for Diagnosis
- 5 Capabilities Needed for Treatment
- 6 Associated Gap Reports
- 7 Other Pertinent Documents
- 8 List of Acronyms
- 9 References
- 10 Last Update

Introduction

A stroke occurs when blood flow to a portion of the brain ceases. The two categories of stroke, ischemic and hemorrhagic, evolve in distinct manners but effectively deprive the brain cells of much-needed oxygen and blood, leading to brain cell death. During an ischemic stroke, the flow of blood through the blood vessel is blocked by a clot. During a hemorrhagic stroke, the weakened wall of a blood vessel breaks open, thus leaking blood directly into the brain. Epidemiologic studies indicate that approximately 87% of strokes in the United States are ischemic, 10% are secondary to intracerebral hemorrhage, and another 3% may be secondary to subarachnoid hemorrhage[1]

The signs and symptoms are predominantly neurological in nature (i.e., headache, slurred speech, muscle weakness). Of note, the signs, symptoms, and severity of a stroke are dependent on the blood vessel that was involved and, consequently, on which part and how much of the brain was affected. Among the many risk factors are increasing age, diabetes mellitus, illicit drug use, hypertension, and family history. Post-stroke care depends on etiology and may involve surgical intervention, anti-coagulation, thrombolysis, or risk factor modification.

Clinical Priority and Clinical Priority Rationale by Design Reference Mission

One of the inherent properties of space flight is a limitation in available mass, power, and volume within the space craft. These limitations mandate prioritization of what medical equipment and consumables are manifested for the flight, and which medical conditions would be addressed. Therefore, clinical priorities have been assigned to describe which medical conditions will be allocated resources for diagnosis and treatment. “Shall” conditions are those for which diagnostic and treatment capability must be provided, due to a high likelihood of their occurrence and severe consequence if the condition were to occur and no treatment was available. “Should” conditions are those for which diagnostic and treatment capability should be provided if mass/power/volume limitations allow. Conditions were designated as “Not Addressed” if no specific diagnostic and/or treatment capability are expected to be manifested, either due to a very low likelihood of occurrence or other limitations (for example, in medical...
training, hardware, or consumables) that would preclude treatment. Design Reference Missions (DRMs) are proposed future missions designated by a set of assumptions that encompass parameters such as destination, length of mission, number of crewmembers, number of Extravehicular Activities (EVAs), and anticipated level of care. The clinical priorities for all medical conditions on the Exploration Medical Condition List (EMCL) can be found here (https://humanresearchwiki.jsc.nasa.gov/index.php?title=Category:All_DRM). The EMCL document may be accessed here (https://humanresearchwiki.jsc.nasa.gov/images/6/62/EMCL_RevC_2013.pdf).

<table>
<thead>
<tr>
<th>Design Reference Mission</th>
<th>Clinical Priority</th>
<th>Clinical Priority Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunar sortie mission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assumptions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 4 crewmembers (3 males, 1 female)</td>
<td>Not Addressed</td>
<td>The likelihood of a stroke occurring during the relatively short duration of a lunar sortie mission is very low. This condition is therefore not specifically addressed by the medical kit.</td>
</tr>
<tr>
<td>- 14 days total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 4 EVAs/crewmember</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Level of Care 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lunar outpost mission		
Assumptions:		
- 4 crewmembers (3 males, 1 female)	Should	The likelihood of a stroke occurring during a lunar outpost mission is low. However, due to the long duration of the mission and frequent EVAs, this condition could develop secondary to a medical illness, head trauma, toxin exposure, hypoxia, or other cause. Therefore, treatment should be manifested if volume and mass allow.
- 180 days total		
- 90 EVAs/crewmember		
- Level of Care 4		

Near-Earth Asteroid (NEA) mission		
Assumptions:		
- 3 crewmembers (2 males, 1 female)	Should	The likelihood of a stroke occurring during a NEA mission is low. However, due to the long duration of the mission and frequent EVAs, this condition could develop secondary to head trauma, hypoxia, or other cause. Therefore, treatment should be manifested if volume and mass allow.
- 395 days total		
- 30 EVAs/crewmember		
- Level of Care 5		

Initial Treatment Steps During Space Flight
A link is provided to a prior version of the International Space Station (ISS) Medical Checklist, which outlines the initial diagnostic and treatment steps recommended during space flight for various conditions which may be encountered onboard the ISS. Further diagnostic and treatment procedures beyond the initial steps outlined in the Medical Checklist are then recommended by the ground-based Flight Surgeon, depending on the clinical scenario. Please note that this version does not represent current diagnostic or treatment capabilities available on the ISS. While more recent versions of this document are not accessible to the general public, the provided version of the checklist can still provide a general sense of how medical conditions are handled in the space flight environment. Medical Checklists will be developed for exploration missions at a later point in time.

Please note this file is over 20 megabytes in size, and may take a few minutes to fully download.

ISS Medical Checklist (http://www.nasa.gov/centers/johnson/pdf/163533main_ISS_Med_CL.pdf)

Capabilities Needed for Diagnosis

The following is a hypothetical list of capabilities that would be helpful in diagnosis. It does not necessarily represent the current capabilities available onboard current spacecraft or on the ISS, and may include capabilities that are not yet feasible in the space flight environment.

- Vital sign measurement capability (blood pressure, pulse, respiratory rate, temperature, pulse oximetry)
- Otoscope
- Electrocardiogram (12-lead ECG) monitor
- Imaging capability [computed tomography (CT), magnetic resonance imaging (MRI), ultrasound]
- Blood analysis

Capabilities Needed for Treatment

The following is a hypothetical list of capabilities that would be helpful in treatment. It does not necessarily represent the current capabilities available onboard current spacecraft or on the ISS, and may include capabilities that are not yet feasible in the space flight environment.

- Crew medical restraint system
- Skin cleanser (such as alcohol/Benzalkonium antiseptic (BZK)/iodine)
- Intravenous (IV) start and administration kit
- IV pump or pressure infuser
- Intravascular volume replacement (such as IV fluids)
- Thrombolytic agents
- Sharps container
- Ambu bag and mask
- Intubation kit
- Ventilator
- Supplemental oxygen
Associated Gap Reports

The NASA Human Research Program (HRP) identifies gaps in knowledge about the health risks associated with human space travel and the ability to mitigate such risks. The overall objective is to identify gaps critical to human space missions and close them through research and development. The gap reports that are applicable to this medical condition are listed below. A link to all of the HRP gaps can be found here (http://humanresearchroadmap.nasa.gov/Gaps/).

1.01 - We do not know which emerging technologies are suitable for preflight medical screening for exploration missions.
2.01 - We do not know the quantified health and mission outcomes due to medical events during exploration missions.
2.02 - We do not know how the inclusion of a physician crew medical officer quantitatively impacts clinical outcomes during exploration missions.
3.01 - We do not know the optimal training methods for in-flight medical conditions identified on the Exploration Medical Condition List taking into account the crew medical officer’s clinical background. (Closed)
3.03 - We do not know which emerging technologies are suitable for in-flight screening, diagnosis, and treatment during exploration missions.
4.01 - We do not have the capability to provide a guided medical procedure system that integrates with the medical system during exploration missions.
4.02 - We do not have the capability to provide non-invasive medical imaging during exploration missions.
4.04 - We do not have the capability to deliver supplemental oxygen to crew members while minimizing local and cabin oxygen build-up during exploration missions.
4.05 - We do not have the capability to measure laboratory analytes in a minimally invasive manner during exploration missions.
4.09 - We do not have the capability to provide medical suction and fluid containment during exploration missions.
4.12 - We do not have the capability to generate and utilize sterile intravenous fluid from potable water during exploration missions.
4.14 - We do not have the capability to track medical inventory in a manner that integrates securely with the medical system during exploration missions.
4.15 - Lack of medication usage tracking system that includes automatic time stamping and crew identification
4.17 - We do not have the capability to package medications to preserve stability and shelf-life during exploration missions.
4.19 - We do not have the capability to monitor physiological parameters in a minimally invasive manner during exploration missions.
4.23 - We do not have the capability to auscultate, transmit, and record body sounds during exploration missions.
4.24 - Lack of knowledge regarding the treatment of conditions on the Space Medicine Exploration Medical Condition List in remote, resource poor environments (Closed)
5.01 - We do not have the capability to comprehensively manage medical data during exploration missions.

Other Pertinent Documents

List of Acronyms
References

Last Update

This topic was last updated on 8/13/2014 (Version 2).

Category: Medical Conditions