
Risk of Reduced Safety and Efficiency Due to Inadequately Designed  
Vehicle, Environment, Tools, or Equipment 267

 
Risk of Reduced Safety and Efficiency 

Due to Inadequately Designed Vehicle, 
Environment, Tools, or Equipment 

 
Susan Schuh 

Wyle Integrated Science and Engineering Group 
 

Abbe Barr 
Lockheed Martin Corporation 

 
Janis H. Connolly 

NASA Johnson Space Center 
 

Barbara Woolford 
NASA Johnson Space Center 

 
Mary Kaiser 

NASA Ames Research Center 
 

 
 

The habitability of the archite cture, habitable environment, tools, and equ ipment is critical for the ex istence of 
humans in space. Any inadequacies in the design of the environment or architecture can restrict or prevent the 
user from surviving in such extreme conditions and may impact safety and performance. Factors that affect the 
habitability mu st be assessed and properly  addre ssed t o ensure al l potent ial haz ards are mitig ated or  
monitored. If the w orkspace, equipment and tool s are not designed to be usabl e by  the full range of cre w 
members, and are not properly  laid out, the li kelihood of errors or crew inability to complete a task in a ti mely 
manner increases. Inconsistent design am ong subsystems and vehicles leads to negat ive transfer of trainin g 
and increased likelihood of errors. – Human Research Program Requirements Document, HRP-47052, Rev. 
C, dated Jan 2009. 

 
 
 
 
  The ISS (photographed by the departing STS-127 

astronauts as they begin their return to Earth) is a 
highly visible example of a successful cooperative 

endeavor. Integrating human factors principles into 
environmental and architectural designs for hardware, 

software, vehicles, and habitats is required to ensure 
the usability of space systems and the safety of 

space travelers.
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 Executive Summary 
The primary goal of the SHFH Element for human space exploration is to preserve the safety of the crew, pro-
mote human performance, and increase efficiency while on orbit. This goal is achieved by integrating human 
factors principles into the environmental and architectural design for hardware, software, vehicles, and habitats. 
In particular, optimal on-orbit environmental conditions and architectural design are critical for the health and 
well-being of space flight crew members as well as the habitability of vehicles and habitats. Optimized usability 
in the design of workspaces, equipment, and tools for the remote space flight environment is also important. Evi-
dence that is captured in this chapter emphasizes the importance of human factors design considerations, and also 
illustrates how operator safety and efficiency can be jeopardized when these considerations are not addressed 
throughout the system life-cycle process for vehicles, environments, tools, and equipment. For a more detailed 
summary of overall concepts that are related to space flight human factors and human-centered design, refer to 
Chapter 9 of this document. 
 

 Introduction 
The purpose of the space human factors discipline is to create and maintain a safe and productive environ-
ment for humans in space, which requires an understanding of human performance and limitations. Inadequate 
implementation of human factors design in work environments will result in reduced human performance, an 
increased likelihood of human errors, and decreased mission safety and effective mission execution. These poten-
tial, negative outcomes emphasize the need for focused, human-centered design that will assist in the development 
of hardware, software, and tools that are better designed to fit the human and reduce overall human safety risks 
to the program. With missions using new technologies at an ever-increasing rate, it is imperative that these ad-
vances enhance crew performance without increasing crew workload, stress, or risk. It is important to identify 
concerns that require a space human factors assessment and highlight the value of space human factors and 
safety on orbit. 
 
This chapter focuses on evidence that is related to the risk of reduced safety and efficiency due to inadequately 
designed vehicles, environments, tools, and equipment. This evidence emphasizes the importance of human 
factors design considerations, and illustrates how operator safety and efficiency can be jeopardized when these 
considerations are not addressed throughout the life cycle of vehicles, environments, tools, and equipment. 
 

 Evidence 
Evidence that is presented in this chapter encompasses lessons learned from 50 years of space flight experience 
that is related to the risk of reduced safety and efficiency due to inadequately designed vehicles, environments,  
tools, or equipment. As with the rest of this book, evidence is classified by categories. Category I and Category 
II evidence consists of quantitative and qualitative findings from research and development. Data are classified 
as Category I or Category II, depending on the specific testing protocol that was used and the data that were sought. 
Category III evidence consists of summaries of subjective experience data, as well as non-experimental observa-
tions and comparative, correlation, case, and case-series studies. It should be noted that some evidence, which is 
essentially Category III evidence, is derived from the ISS Life Sciences Crew Comments Database. Although 
summaries of ISS crew comments are presented as evidence here, the Life Sciences Crew Comments Database is 
protected and, therefore, is not publicly available due to the sensitive nature of the raw crew data that it contains. 
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Category IV17 evidence consists of expert committee reports and respected authorities’ opinions that are based 
on clinical experiences, bench research, and “first principles.” 
 
Evidence that is described in this chapter details human space flight safety and human performance efficiency 
issues that are related to environmental and architectural design as well as to the usability and design of work-
spaces, equipment, and tools. When these aspects of design are inadequate, overall habitability is affected; these 
issues must therefore be assessed and properly addressed to ensure that all potential hazards are mitigated or moni-
tored. If the workspace, equipment, and tools are not designed to be usable by the full range of crew members 
and are not properly laid out, the likelihood of errors or of the inability of the crew to complete a task in a 
timely manner increases. Inconsistent design of subsystems and vehicles leads to negative transfer of training 
and an increased likelihood of errors. 
 

 Environmental and architectural design 

Optimal on-orbit environmental conditions and architectural design are critical for the health and well-being 
of space flight crew members and the habitability of vehicles and habitats. Any inadequacies in the design of 
the architecture or the environment that is built can affect the safety and performance of the human. The envi-
ronmental and architectural factors affecting habitability must be assessed and properly addressed to ensure that 
all potential hazards are mitigated or, at a minimum, monitored. Noise and lighting issues are specific environ-
mental issues that are experienced on orbit that affect habitability. Issues that are related to environment depend 
on the manner and extent of exposure to environmental elements. Architecture issues that impact habitability are 
related to the design, configuration, and topology of the interior volume of space vehicles and modules and to the 
co-location of systems and tasks. They include issues that are related to human translation (movement from one 
location to another) and orientation information as well as problems that have occurred when vehicles, habitats, 
or other hardware designs did not accommodate the user. 
 
For example, noise is a pervasive aspect of all living and working environments that can, at times, present 
hazards. The ISS acoustic environment, in particular, is complex, and includes many types of noise-generating 
hardware because the ISS provides not only home for the space flight crew, but also their workshop and labora-
tory (Rando et al., 2005). The cumulative effects of the ISS acoustic environment manifest themselves in two 
forms: continuous and intermittent noise (Baggerman et al., 2004). Continuous noise is generated by the opera-
tion of pumps, fans, compressors, avionics, and other noise-producing hardware or systems. Intermittent noise is 
caused by hardware that operates cyclically, e.g., exercise equipment or the carbon dioxide removal system. On-
board acoustics measurements in various ISS modules often exceed the ISS flight rules for noise exposure and 
can be at 67 dB or higher over a cumulative 24-hour period (Goodman, 2000; Clark and Allen, 2008). Issues 
and constraints that are related to the acoustics environment increase the risk of impacts on crew safety as the 
crew may not be able to hear the C&Ws. Although C&W tones are typically audible, noise within the ISS 
from daily operations and activities has sometimes impeded the crew’s ability to hear the C&W tones. 

                                                 
 
17To help characterize the kind of evidence that is provided in each of the risk reports in this book, the authors were encouraged to 
label the evidence that they provided according to the “NASA Categories of Evidence.” 
 
 Category I data are based on at least one randomized controlled trial. 

 Category II data are based on at least one controlled study without randomization, including cohort, case-controlled or subject 
operating as own control. 

 Category III data are non-experimental observations or comparative, correlation and case, or case-series studies. 

 Category IV data are expert committee reports or opinions of respected authorities that are based on clinical experiences, bench 
research, or “first principles.” 
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This inability to hear can also affect efficient mission performance by interfering with communication be-
tween crew members as well as between the crew and the ground. As documented in the ISS Life Sciences 
Crew Comments Database, noise has interfered with communication between crew members in different mod-
ules as well as between crew members in the same module. Noise has cost crew members time as they translate 
between modules to communicate directly. Wearing hearing protection because of high noise levels also impacts 
communication (figure 10-1). In addition, some crew members have reported that excessive noise on station has 
negatively contributed to their perception of ISS habitability. For instance, on-board noise has wakened some 
sleeping crew members. These examples show the need for optimal environmental conditions, such as acoustic 
levels that are below unacceptable noise thresholds, and the appropriate provision of auditory information 
(Category III). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The provision of adequate lighting conditions is also essential for any living and working environment, 
including on board ISS. Although the station has increased substantially in size, it still remains a confined 
environment in which crew members live and work. It limits them to only the lights that are provided in mod-
ules and the additional lighting that is provided by portable and handheld lights. The evidence that is described 
below emphasizes the importance of providing appropriate lighting conditions. 
 
Several issues have arisen with lighting on board the ISS (Baggerman et al., 2004). Lighting in some of the 
ISS modules was not originally installed in a manner that would provide the maximum amount of light output 
that had been designed into the lighting fixture. In addition, lights have failed throughout the life of the ISS, and 
limits on shuttle and Soyuz launch mass and volume have prevented the delivery of replacement light fixtures. 
Lighting in the ISS Node 1 module has been further affected by excessive stowage that has blocked operational 
lights, thus reducing the reflectivity of the surrounding surfaces. Because of the low lighting levels, some crew 
members have had to move certain tasks out of Node 1 to perform them, which both increases the time that is 
necessary to perform tasks and decreases efficiency. Working behind panels or racks without dedicated lighting 
has been difficult for some of the crew members. This situation forces them to accommodate and make up for 
the poor design by using other types of portable lighting while they are searching for items or working behind 

 
Figure 10-1. ISS018-E-027439 — Cosmonaut Yury Lonchakov, 
Expedition 18 flight engineer, wears a hearing-protection device as he 
uses an oscilloscope to measure voltage in the Pirs docking compartment 
of the ISS (NASA Human Spaceflight Gallery, 2008). 
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panels. In summary, these impedances and inadequacies related to the ISS lighting have contributed to risks to 
efficiency on board the station (Category III). 
 
Inefficiencies in space flight vehicle and habitat architectural design as well as the co-location of systems and 
tasks can affect crew safety, efficiency, and habitability. The co-location of certain functional habitability areas 
has been problematic throughout long-duration space flight due to vehicle size and topology constraints (figure 
10-2). Lessons-learned summaries from the data that were collected in the ISS Life Sciences Crew Comments 
Database provide evidence that, on board the ISS, the adjacency of sleeping quarters with waste and hygiene fa-
cilities has not proven optimal due to the noise that is made by the equipment, which disrupts crew sleep. The co-
location of the dining facilities near the exercise equipment and waste collection facilities compromises meal 
scheduling by influencing when food preparation and dining can be done. Although it is still possible to conduct 
dining activities while other crew members are exercising or using the Waste Collection System, it is not optimal. 
In addition, locating the dining facilities near the laboratory work jeopardizes both the habitability of the station 
and the integrity of its science activities. The integrity of science can be compromised by the introduction of 
foreign debris (e.g., food products), which can alter the results of an experiment by contaminating an envi-
ronment that should be controlled. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The movement of crew and hardware through the confined spaces of the ISS has been an ongoing topic of 
concern. As documented in the ISS Life Sciences Crew Comments Database, frequently used ISS translation 
passages have been blocked by large items, such as stowage or exercise equipment, which has contributed to 
congestion (figure 10-3). The location of the dining table in a high-traffic area such as the Zvezda service mod-
ule (pictured in figure 10-2(a) and (b), above), with other colocated habitability hardware, has made translation 
difficult for crews. These co-location issues are caused by the lack of available habitable volume and resources 
that is endemic when living in space. This design concept has been suboptimal, however, and will not benefit 
future space habitat designs, as it presents numerous operational hazards to crews. Indeed, these vehicle design 
and topology constraints can affect daily tasks, habitability, and overall mission objectives so much that they 
impede crew safety; clearly, therefore, they must be improved (Category III). 
 

Figure 10-2b. ISS019-E-010232 — Japan Aerospace 
Exploration Agency astronaut Koichi Wakata, Expedition 
19/20 flight engineer, floats in the Zvezda service 
module of the ISS (NASA Human Spaceflight 
Gallery, 2008). 

Figure 10-2a. ISS008-E-21921 — Astronaut C. Michael Foale, 
Expedition 8 commander and NASA ISS science officer, equip-
ped with a bungee harness, performs squat exercises on the 
Treadmill Vibration Isolation System in the Zvezda service 
module (NASA Human Spaceflight Gallery, 2008). 
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Issues can also arise when safety precautions for the space environment do not take into account pre-flight 
ground activities. An example of what can occur when on-orbit and pre-flight activities are not well melded 
took place during the Apollo Program on January 27, 1967, when the Apollo 1 crew initiated what should have 
been a routine countdown drill. Disaster struck when a flash fire erupted in the command module at the NASA 
Kennedy Space Center, Pad 34 (figure 10-4). All three of the crew members lost their lives because they were 
unable to open the hatch and escape the command module to safety (Kranz, 2000). Numerous factors contributed 
to this incident, including an inadequate hatch design. The hatch, which had been designed to open inward, was 
impossible for a human to open at the pressure levels that were extant within the vehicle. Procedures or processes 
had not been put in place to deal with this type of emergency event because little consideration had been given 
to the risks and hazards that were associated with any of the pre-flight activities, only with those pertaining to 
space flight. This oversight contributed to the unsafe situation in the capsule and, ultimately, led to the crew 
members’ deaths (Category III). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10-3. ISS011-E-06401 — Astronaut John L. Phillips, Expedition 11 
NASA ISS science officer and flight engineer, is photographed among 
stowage bags in an airlock on the ISS. This photograph illustrates the 
physical transition/movement difficulties that are encountered on board 
station (NASA Human Spaceflight Gallery, 2008). 

Figure 10-4. Apollo 1 crew prior to the tragic fire (left; from left, Virgil I. Grissom, Edward H. White II, and Roger B. Chaffee) 
and the vehicle after the fire (right) (United States Centennial of Flight Commission, 2003). 
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The data that have been amassed on space flight crew postural changes are limited. Currently, space flight re-
searchers are attempting to assess postural changes in zero g and related effects on crew health and safety for 
future Constellation Program missions. These postural changes directly affect the architectural design constraints 
and considerations for these future missions in which crew members will experience an increase in height of about 
3% during the first day or two of weightlessness. These crew members will retain this increase throughout the 
mission until they are exposed again to 1g, at which time the process is reversed (Anthropometric source book, 
1978). Current research indicates that weightless posture differs from any normal 1g posture on Earth, and that 
the body rebels with fatigue and discomfort against any attempts to force it into 1g postures or appliances that 
are consistent with 1g postures. The occurrence of crew member height changes was recognized when height data 
were collected on Skylab 4 and during the Apollo-Soyuz Test Project (ASTP) and were then compared to pre- 
and post-flight data. The design and usability of any human-machine interface can be affected by changes in the 
height and length of the trunk (Brown 1975; 1977). Examples of design problems include the design of pressure 
suits, clothing, workstations, and cockpit seating. New research is planned for upcoming shuttle missions to de-
termine the potential for increased impacts on future vehicle crews from postural limitations on seated height 
and changes in it, and from the architectural design constraints of the vehicle. These assessments are aimed 
at increasing safety and efficiency for future missions (Category II). 
 

 Usability and design of workspaces, equipment, and tools 

The importance of optimized usability and the design of workspaces, equipment, and tools increases in the 
remote space flight environment. As stated by the authors of the SHFH Risk description, if the workspace, 
equipment, and tools are not designed to be usable by the full range of crew members and are not properly laid 
out, the likelihood increases of errors or the inability of the crew to complete a task in a timely manner. Incon-
sistent design among subsystems and vehicles can also lead to the negative transfer of training, which risks the 
safety of the crew, and an increased likelihood of errors. 
 
A high level of human-machine interdependence exists in space systems. To promote safe and efficient human 
factors designs, it is important to consider in the design process not only the biological effects of microgravity, 
but also the capabilities and limitations of both people and machines. For example, when tools are designed for 
use during an EVA, the strength that is required to use the equipment should be guided by that of the weakest 
and smallest individuals (i.e., the 1st-percentile female), as all crew members will have an equal likelihood of 
needing to use the equipment in an emergency (Category III). 
 
The poor design of workspaces, equipment, and tools on orbit, which will result in poor usability, can lead to 
performance degradation and reduced situational awareness. As documented in the ISS Life Sciences Crew 
Comments Database, some ISS hardware items and tools do not have common or consistent interfaces. In 
addition some hardware items require unique tools, and the metric and English systems are used inconsistently 
because station hardware and tools are designed by U.S. and International Partners. 
 
Spacesuits are an essential tool for crew members who are living and working in extreme environments such 
as the moon or Mars as well as for space shuttle and ISS EVAs. Achieving suit comfort has been a challenge for 
designers. In a study that was conducted in January 2008, data were collected on three subjective measures of com-
fort in the advanced crew escape suit (ACES), the Mark III suit, and the rear entry ILC Dover suit (REI) (Harvey 
et al., 2007). With regard to overall discomfort, subjects documented that no matter which spacesuit they were 
in, they experienced some level of discomfort, and this level of discomfort increased during pressurized testing. 
Specific anatomical regions where discomfort was noted were the shoulders, back, neck, knees, and lower arms. 
Discomfort while suited was attributed to the pressure demand regulator in the ACES and to bearing and resting 
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weight in the two planetary suits (i.e., the Mark III suit and the REI). These concerns will figure more promi-
nently for long-duration planetary habitation because of the large number of anticipated EVAs that will be re-
quired. Suit discomfort can reduce the safety and efficiency of all aspects of crew performance (Category II). 
 
Stowage is a critical component of the usability and design of space flight vehicle and habitat workspaces 
(Clark and Allen, 2008). On-orbit stowage includes not only the location of, but also the organization of, stowed 
items. Operations are impeded if stowed items cannot be easily located or identified (figures 10-5 through 10-7). 
With increased and accumulating stowage on board the ISS, there has been a need to stow items in front of 
panels and in translation paths, resulting in the crew members’ reduced ability to access items quickly. In 
addition, cable routing blocks access to panels and stowage locations. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 10-5. S118-E-07630 — Astronaut 
Alvin Drew, STS-118 mission specialist, 
moves a stowage container through the 
Destiny laboratory of the ISS while Space 
Shuttle Endeavour remains docked 
with the station (NASA Human 
Spaceflight Gallery, 2008). 

Figure 10-6. ISS010-E-25228 — This view 
shows supplies and equipment stowed in 
the functional cargo block (FGB) or Zarya 

photographed by a crew member on the ISS. 
(NASA Human Spaceflight Gallery, 2008).
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ISS accessibility problems are caused both by obstructions and by the design and integration of hardware 
(Clark and Allen, 2008). The interior components of the U.S. segment of the ISS are grouped into a series of 
“racks” that individually rotate, or tip over, to provide crew access to the rack utility connections and the mod-
ule wall. However, crew feedback has indicated that rotating the racks is not an effective way to access utilities 
and connectors in the microgravity environment on station. The clearance that is required for human accessibility 
has been repeatedly cited as an issue in rack rotation capability. The design of the panels and drawers with these 
racks has compromised crew accessibility because many of them “stick” on orbit because the design does not 
operate as intended in zero g, or too many items are placed in the stowage locations and are not organized to 
afford easy operation. 
 
Finally, overall topology of workspaces has negatively affected crew accessibility. As an example, the U.S. cycle 
ergometer blocks access to the U.S. Laboratory window. As physical and visual access to on-board windows is 
very important to crew members for their mental health and overall judgment of habitability, restricted access and 
blocked translation paths contribute negatively to the overall safety and efficiency of the crew, especially in the 
event of an emergency (Category III). 
 
The ISS on-board stowage accumulation has also been exacerbated by the buildup of packing materials that 
arrive with each shipment (by either space shuttle or a resupply vehicle, such as the Russian Progress module) 
(Baggerman et al., 2004). The limitations that are associated with the ability to dispose of packing materials on 
station result in excessive amounts of space being used to stow waste. The amount of stowage on board the ISS 
has increased to the point that all of the designated stowage areas are full and items are now being stowed in areas 
that were intended for habitability and work-related functions. Items are now stowed in passageways as well as 
in front of other stowage areas. In some instances, the stowage violates the allowable limits requirements that 
were originally set for the habitable volume areas. The result of this is that when crew members are searching for 
items, they must move many other stowed items out of the way to gain access to the place in which a desired 
item is located. During some ISS Expeditions, stowage has been located in the translation aisle, thereby block-
ing the emergency fire ports. This specific issue serves as an example of the risk that excessive stowage can 
impose on crew safety (Category III). 
 

Figure 10-7. ISS016-E-028889 — Cosmonaut 
Yuri I. Malenchenko, Expedition 16 flight engi-
neer representing the Russian Federal Space 
Agency, works in the Unity node of the ISS 
while Space Shuttle Atlantis (STS-122) is 
docked with the station. (NASA Human 
Spaceflight Gallery, 2008). 



 
Human Health and Performance Risks of Space Exploration Missions Chapter 10 

Risk of Reduced Safety and Efficiency Due to Inadequately Designed  
Vehicle, Environment, Tools, or Equipment 277

 

Balancing the launching of ISS supplies (manifest) with the ability to dispose of waste and to return items 
to Earth (down mass) is necessary to maintain habitable conditions on the ISS (Baggerman et al., 2004). The 
stowage situation became a habitability issue because of an imbalance between the space shuttle launch and 
return mass limits due to the grounding of the shuttle fleet after the Columbia accident and the reluctance of ISS 
Program personnel to dispose of unused hardware and supplies. As the amount of on-board stowage has, at times, 
exceeded the allowable ISS requirements for acceptable levels of stowage in the habitable volume, stowage levels 
are constantly tracked and evaluated. Over time, the on-board inventory of supplies (e.g., clothing and hygiene 
supplies) has increased, and the manifesting of these supplies still continues. Each ISS Expedition crew member 
brings a selection of personal items with him or her to station, and at the end of that crew member’s stay the un-
used items remain. This increase in inventory contributes to crew safety risks, as ample stowage space is not avail-
able to accommodate placement of items outside of the habitable volume and translation paths. As the inventory 
management function has improved and the manifesting process has been streamlined, this situation has improved 
somewhat; stowage nevertheless continues to be a problem due to the lack and inconsistent nature of disposal 
capability due to space shuttle flights and inconsistent practices for tracking hardware and supplies (Category 
III). 

 

 Computer-based Simulation Information 
Understanding human integration with systems and identifying risks that may be inherent in a concept or a 
design is often achieved via computer-based simulation. Computer-based simulation tools have multiple uses, 
including detection of potential risks to humans that are associated with reduced safety and efficiency due to 
inadequately designed space vehicles, environments, tools, or equipment. Computer-based simulation and 
virtual environments create a representation of the real world, and the user interacts with this representation with 
the aid of head-mounted displays, data gloves, and three-dimensional audio, haptic, or tactile feedback. Such 
environments can be used for training or, perhaps, interacting with prototypes that do not yet exist in the real 
world. 
 
In the 1990s, NASA and the Federal Aviation Administration (FAA) engaged in several joint research efforts 
with the goal of providing safer, faster, and more fuel-efficient routing operation in flight management through 
use of automation in air traffic control (Pisanich and Corker, 1995). It was thought that integrating automation 
technologies into the air traffic control system could optimize routing, sequencing, and scheduling in the terminal 
areas and, ultimately, improve efficiency while relaxing constraints during flight to accommodate user-preferred 
routing and schedules. Man-machine Integration Design and Analysis System (MIDAS) was adapted to model a 
predictive flight crew performance (figure 10-8) that focused on predicting the performance of a two-pilot flight 
crew responding to information that was generated by an automated air traffic control system, the Center 
Terminal Radar Approach Control (TRACON) Automation System (CTAS). 
 
During the course of research, experimenters conducted two computer simulations. The first of these employed 
a model of top of descent (TOD). This model was developed with the goal of determining an optimal range of 
time in which the CTAS descent clearance would be issued so that the aircrew would be likely to accept the 
clearance and enact it using flight deck automation rather than by manually commanding the descent. This model 
confirmed that as the TOD point draws closer, the aircrew will select the less-automated alternative mode of 
control. In this study, as the aircraft approached within 5 to 8 miles of the CTAS-required TOD point, the number 
of successes in any clearance compliance was reduced significantly. It was found that multiple simulated trials 
could be conducted without compromising human safety when determining the optimal range of time in which 
to issue CTAS descent clearance. Moreover, multiple scenarios could be tested that did not require the use of 
an aircraft, and the aircrew’s trust in the automation could also be determined. Results of the study assisted 
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designers in integrating automation technologies into the system to improve crew efficiency by optimizing 
routing, sequencing, and scheduling. This provides evidence that inadequately designed equipment could 
lead to a risk of reduced safety and efficiency (Category II). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10-8. Full MIDAS closed-loop model (Pisanich and Corker, 1995). 

 

 Risk in Context of Exploration Mission Operational Scenarios 
Future Exploration mission durations will substantially lengthen. During this extended timeframe, crews will 
face the challenges of physical deconditioning, prolonged isolation and confinement, significant communication 
latencies, environmental stressors, and increased responsibility and autonomy. Effective human-centered design 
techniques for vehicles, habitats, and missions allow Exploration mission operational scenarios to be managed 
and controlled. For further information, see Chapter 9 of this report. 
 
Human-centered design must be implemented in all aspects of the design process to mitigate or prevent space 
human factors engineering risks from occurring and specifically to ensure the safety and efficiency of the crew. 
Designing for reduced gravity will be critical. Lunar and martian environmental conditions – air quality, dust, 
radiation exposure, and lighting – must be addressed. The interior configuration of the spacecraft must support 
expected crew tasks. Hardware commonality and standardization will support interchangeability and reduce the 
amount of time that is needed for training. Spacecraft designers need to ensure that appropriate spares and stow-
age volumes are available and can be accessed in a timely manner. A reduction in required maintenance and 
interface with complex systems should also be implemented. 
 

 Conclusion 
The risk of reduced safety and efficiency due to inadequately designed vehicle, environment, tools, or equip-
ment stems from a broader cause of human error – the lack of human-centered design, which requires a focus on 
the user throughout the design process. Good human-centered design practices will result in improved efficiency 
of operation and safety of all system components, including the human, and should reduce the life-cycle cost of 
the project. The evidence that is discussed in this chapter identifies concerns that are associated with the risk. To 
alleviate these concerns, knowledge gaps, or “holes,” and future research directions have been identified. Some 
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of these knowledge gaps are related to poorly designed hardware, software, environments, and habitats as 
well as the lack of appropriate design considerations, guidelines, and countermeasures for systems on future 
vehicles. 
 
The human-machine system emphasizes the importance of the human as the central focus of the human-
centered design process. This focus includes consideration for human capabilities, limitations, and interaction 
with automation and hardware. Knowledge gaps, or “holes,” that are related to the lack of an integrated system 
design approach for environmental and architectural design and usability and the design of workspaces, equip-
ment, and tools must be addressed to ensure that quality standards, requirements, tools, and techniques are de-
veloped to allow positive crew-system integration and interaction to occur and, ultimately, mission success. 
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