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I. PRD Risk Title: Risk of Acute Radiation Syndromes due to Solar Particle 
Events 

 
Crew health and performance may be impacted by a major solar particle event (SPE), multiple 
SPEs, or the cumulative effect of galactic cosmic rays (GCR) and SPEs. Beyond low-Earth orbit, 
the protection of the Earth's magnetosphere is no longer available, such that increased shielding 
and protective mechanisms are necessary in order to prevent acute radiation sickness and impacts 
to mission success or crew survival. While operational monitoring and shielding are expected to 
minimize radiation exposures, there are EVA scenarios outside of low-Earth orbit where the risk 
of prodromal effects, including nausea, vomiting, anorexia, and fatigue, as well as skin injury 
and depletion of the blood-forming organs (BFO), may occur.  There is a reasonable concern that 
a compromised immune system due to high skin doses from a SPE or due to synergistic space 
flight factors (e.g., microgravity) may lead to increased risk to the BFO. The primary data 
available at present are derived from analyses of medical patients and persons accidentally 
exposed to acute, high doses of low-linear energy transfer (LET) (or terrestrial) radiation. Data 
more specific to the space flight environment must be compiled to quantify the magnitude of 
increase of this risk and to develop appropriate protection strategies. In particular, information 
addressing the distinct differences between solar proton exposures and terrestrial exposure 
scenarios, including radiation quality, dose-rate effects, and non-uniform dose distributions, is 
required for accurate risk estimation.  
 
II. Executive Summary 
 

The foundation of acute radiation syndrome (ARS) evidence is ground-based 
observations of humans who were exposed to high levels of ionizing radiation, in particular to 
gamma- or x-rays, in a short period of time. Data on ARS have been summarized in the literature 
and in numerous committee reports, including reports from the National Council on Radiation 
Protection (NCRP) and the National Research Council (NRC), which provide the foundation of 
evidence used by NASA for research plans and operational radiation protection strategies. 
 The risk of ARS from exposure to large solar particle events (SPEs) during space 
missions was identified during the early days of the human space program (NAS/NRC 1967). ARS 
symptoms can include hematopoietic, gastrointestinal, cutaneous, and neurovascular decrements. 
However, the ARS symptoms that appear in the prodromal phase post-exposure (e.g., nausea, 
vomiting, anorexia, and fatigue) are the most likely to be experienced based on estimated organ 
doses during extra-vehicular activity (EVA; free space or lunar operations) and could 
significantly impact mission success if adequate shielding is not reached in a timely manner 
(ICRP 2012). 

Small- to medium-sized SPEs are known to occur quite often over the approximately 11-
year solar cycle, but they are highly episodic and difficult to predict. Large mission-threatening 
events are rare. SPEs include low- to medium-energy protons, with the energy region of most 
importance to human spaceflight extending out to a few hundred MeV, as well as much smaller 
components of helium and heavy nuclei. During such events, the flux of protons with energy 
greater than 10 MeV may increase over background by 4 to 5 orders of magnitude for a period of 
several hours to a few days.  The shapes of the energy spectra, as well as the total fluence, vary 
considerably from event to event. ARS has been well-defined for gamma- and X-ray exposures, 
both characterized as low-LET radiation. However, less is known about the acute effects from 
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whole-body exposures to SPE protons, which are characterized by dynamic changes in energy 
distribution, leading to dose rates that can vary several-fold between tissue sites throughout the 
human body. Additional radiobiology research is needed to understand how reduced immunity 
from large skin doses or other synergistic effects of spaceflight, such as microgravity, may alter 
dose thresholds for response as well as to identify and validate  the effectiveness of medical 
countermeasures for proton irradiations. 

Improvements in SPE forecasting and alert systems are needed to minimize operational 
constraints, especially for EVA. While radiation shielding is an effective mitigation to ARS, the 
high cost of shielding requires accurate estimates of the risk to ensure that sufficient protection is 
provided without overestimating shielding requirements.   

NASA has developed several models for the probabilistic risk assessment of acute 
radiation syndrome from SPEs. These models include the improved spectral fit of SPEs over all 
energies and the analysis of any SPEs at a certain proton fluence based on the distribution of 
total fluence of the recorded SPEs. These models were built to fulfill National Research Council 
(NRC) recommendations from 2008 for the development of probabilistic approaches to modeling 
SPEs, Managing Space Radiation Risk in the New Era of Space Exploration (NRC 2008). In 
addition, nonlinear kinetics models of bone marrow stem cells and various blood system 
components have been developed to describe and provide accurate descriptions of human and 
other species responses to acute and chronic irradiation. These organ dose projection models are 
incorporated in a software package called ARRBOD for use by mission planners, radiation shield 
designers, and space operations to evaluate clinically significant deterministic health effects, 
including performance degradation in flight, from exposure to large SPEs.  
 
 
III. Introduction 

 
A.  Description of Acute Risks of Concern to NASA 

 
In contrast to the constant presence of GCRs in space, SPE exposures are sporadic and 

occur with little warning. During a SPE, the Sun releases a large amount of energetic particles. 
Although the composition of the particle type varies slightly from event to event, those of most 
concern for human missions on average consist of 96% protons, 4% helium ions, and a small 
fraction of heavier ions (NCRP 1989a; Cucinotta et al. 1994; Townsend et al. 1994; Kim et al. 
1999). The intensity and the energy spectrum of an SPE vary throughout the course of the event, 
which lasts from a few hours to several days. Each event has distinct temporal and energy 
characteristics. The intensity of the event can be described by particle fluence, F>E, which is the 
number of ions per unit area with energy greater than E, expressed as mega electron volts per 
nucleon (MeV/n). The energies of the protons are important because the range of penetration of 
these protons increases with energy. Protons with energies above 30 MeV have sufficient range to 
penetrate an EVA spacesuit and are used as a simple scaling parameter to compare different 
SPEs. The majority of SPEs observed in the last 50 years are relatively harmless to human 
health, with doses below 10 mGy requiring minimal shielding protection. However, SPEs that 
have the highest fluence of particles with energies above 30 MeV are of greatest concern for future 
missions outside the protection of the earth’s magnetic field (Kim et al. 2011). 
 Figure 1 shows data that were collected in the modern era for the F>30 MeV proton fluence 
(bottom panel) from large SPEs and the solar modulation parameter (Φ) (upper panel). The solar 
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modulation parameter describes the strength of the sun’s magnetic field with solar maximum at 
Φ>1,000 MV (Kim et al. 2011). The various SPEs shown in Figure 1, which are characterized as 
large SPEs (F>30 MeV > 108 particles/cm2), would contribute doses of 10 to 500 mGy for average 
shielding conditions. Although the dose resulting from the majority of SPEs is small, SPEs 
nonetheless pose significant operational challenges because the eventual size of an event 
cannot be predicted until several hours after the particles are initially detected. Extraordinarily 
large SPEs were recorded in November 1960, August 1972, and October 1989. In general, SPEs 
occur more often near solar maximum, but as Figure 1 shows, the correlation between event 
frequency and solar conditions is not precise (Shea and Smart 1990; Kim et al. 2011). To date, 
accurate short- or long-term prediction of SPEs has not been possible. 

 

 
Figure 1. Historical data on fluence of protons above 30 MeV per cm2 (F>30 MeV from large SPEs relative 
to solar modulation parameter [Φ]). Only events with F>30 MeV >108 protons/cm2 are shown. 
 

Without sufficient shielding protection for these large events, a whole-body dose of over 
0.5 Gy (500 mGy) may be received over a period of several hours (Parsons and Townsend 2000; 
Kim et al. 2011), which would put humans at risk for development of ARS and could impact 
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operations by affecting crew performance, leading to the possibility of mission failure. However, 
shielding and operational, active dosimetry are effective countermeasures to SPEs inside 
spacecraft, making ARS extremely unlikely except in extended EVA or combined EVA and 
intra-vehicular activity (IVA) scenarios (Wilson 1997). 
 
B.  Current NASA Permissible Exposure Limits 
 

Current permissible exposure limits (PELs) for short-term and career astronaut exposures 
to space radiation have been approved by the NASA Chief Health and Medical Officer as 
documented in NASA Standard 3001, Vol. 1, Revision A, 2014. The PELs provide the basis for 
setting requirements and standards for mission design and crew selection. Past reviews of evidence 
by the National Academy of Sciences (NAS) and the NCRP form the basis for the NASA PELs, 
including short-term limits that are imposed to prevent clinically significant deterministic health 
effects, including performance degradation in flight (NASA 2007, 2011, 2014). NAS first 
reviewed space flight issues in 1967 (NAS/NRC 1967) and conducted a further review in 1970 
(NAS/NRC 1970) that led to the dose limits that were used at NASA until 1989. Extensive reviews 
of humans and experimental radiobiology data for ARS were provided to NASA by reports of 
the NCRP in 1989, 2000, and 2006 (NCRP 1989b, 2000, 2006). The report of the NAS in 1970 
is the basis for the limits to the BFO that are currently used at NASA, which are instituted to 
protect the hematopoietic system from depletion below a critical limit. Dose limits for the pro-
dromal risks were not advocated by the NAS or the NCRP for NASA missions in the past. 
However, the BFO limit likely occurs at doses below that of the threshold for prodromal effects, 
so adherence to the BFO 30-day limit protects against occurrence of ARS. 

The current NASA dose limits for deterministic effects to the lens, skin, BFO, and 
circulatory system, which are given in units of Gray-equivalent (Gy-Eq), are listed in Table 1. 
The unit of Gray-equivalent is calculated using the relative biological effectiveness (RBE) 
values shown in Table 2 as described in NCRP Report No. 132 (2000) and is distinct from the 
unit of Sievert (Sv) that is used to project cancer risk. Note that while the Gray Equivalent 
quantity is used to limit these non-cancer effects (Table 1), the RBEs for central nervous system 
(CNS) non-cancer effects are largely unknown; therefore, a physical dose limit (mGy) is used, 
with an additional PEL requirement for particles with charge Z>10 (Table 1). 

Doses to the BFO from an SPE event above 1 Gy are highly unlikely if crew members 
are able to reach a moderately shielded (5 to 10 g/cm2) location in a timely manner.  Table 3, 
updated from Hu et al. (2009) using ARRBOD 2.0 with an exponential fitting scheme, presents 
estimates of several dosimetric quantities from three historically large SPEs (August 1972 SPE, 
October 1989 SPE, September 1989 SPE) for the total event spectra in interplanetary space 
calculated for a spacesuit during an EVA (an aluminum sphere of 0.3 gm/cm2 thickness), inside 
a typical equipment room of a spacecraft (an aluminum sphere of 5 gm/cm2 thickness) and with 
increasing quantities of shielding. These are total dose estimates over an entire event spectra, 
which exceeded 60 hrs for the August 1972 event. 
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Table 1. Dose Limits for Short-Term or Career Non-Cancer Effects (in mGy-Eq or mGy) 
Note: RBEs for specific risks are distinct as described below. 
Organ 30-day limit 1-year limit Career 

Lens* 1,000 mGy-Eq 2,000 mGy-Eq 4,000 mGy-Eq 

Skin 1,500 mGy-Eq 3,000 mGy-Eq 6,000 mGy-Eq 

BFO 250 mGy-Eq 500 mGy-Eq Not applicable 

Heart** 250 mGy-Eq 500 mGy-Eq 1,000 mGy-Eq 

CNS*** 500 mGy 1,000 mGy 1,500 mGy 

CNS*** (Z ≥ 10) – 100 mGy 250 mGy 
 
*Lens limits are intended to prevent early (<5 yr) severe cataracts, e.g., from a solar particle event. An additional 
cataract risk exists at lower doses from cosmic rays for sub-clinical cataracts, which may progress to severe types 
after long latency (>5 yr) and are not preventable by existing mitigation measures; however, they are deemed an 
acceptable risk to the program.  
**Circulatory system doses calculated as average over heart muscle and adjacent arteries.  
***CNS limits should be calculated at the hippocampus.  
Reference: NCRP (2000) Recommendations of Dose Limits for Low Earth Orbit. NCRP Report 132, Bethesda MD.  
 
 
Table 2. RBE for Non-Cancer Effectsa of the Lens, Skin, BFO, and Circulatory Systems 

 
a RBE values for late deterministic effects are higher than for early effects in some tissues and are influenced by the 
doses used to determine the RBE.  
b There are not sufficient data on which to base RBE values for early or late effects by neutrons of energies <1 MeV 
or greater than about 25 MeV.  
c There are few data on the tissue effects of ions with a Z>18, but the RBE values for iron ions (Z=26) are 
comparable to those of argon (Z=18). One possible exception is cataract of the lens of the eye because high RBE 
values for cataracts in mice have been reported.  
Reference: NCRP (2000) Recommendations of Dose Limits for Low Earth Orbit. NCRP Report 132, Bethesda MD. 
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Table 3. Dosimetry quantities in interplanetary space from total event spectra of three large SPEs. (Note: 
EVA exposures (0.3 gm/cm2) listed in Table are highly unlikely and illustrate the effectiveness of 
operational protocols where crew would shelter for the majority of event duration, which can last for 
several days.) 

 
 
Tissue-specific dose estimates for females and males (in Gy) for the August 1972 King event are 
presented in Table 4. These numbers were generated using Oltaris (https://oltaris.nasa.gov/) with 
FAX and MAX anatomical models. The GI dose is computed as the average dose received by the 
small intestine, stomach, and colon. Note the rapid attenuation of tissue dose with increasing 
quantities of shielding. Design and operational requirements, including access to storm shelters 
with thicker shielding, will aim to minimize exposures to less than 250 mGy-Eq to the BFO, thus 
limiting health risks to the crew. 
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Table 4. Total tissue dose accumulation for the August 1972 SPE calculated using the Oltaris web-based 
analysis tool. (Note: EVA exposures (0.4 gm/cm2) listed in Table are highly unlikely and illustrate the 
effectiveness of operational protocols where crew would shelter for the majority of event duration, which 
can last for several days.)  

 
 
 
IV. Evidence 

 
A. Human Evidence 
 
The human evidence presented in this section is Category III unless otherwise noted.   

 
 
 

Shielding	Thickness 0.4	g/cm2 5	g/cm2 10	g/cm2 20	g/cm2 0.4	g/cm2 5	g/cm2 10	g/cm2 20	g/cm2

Organ	Specific	Dose	
(Gy)

Skin 27.98 2.74 0.71 0.11 28.20 2.76 0.72 0.11
BFO 1.43 0.39 0.14 0.03 1.01 0.29 0.11 0.03
Brain 1.55 0.51 0.20 0.05 1.30 0.45 0.17 0.04
Hippocampus 1.04 0.38 0.15 0.04 0.92 0.34 0.14 0.04
Ovaries 0.28 0.12 0.06 0.02 3.95 0.92 0.30 0.06
GI	 0.63 0.23 0.09 0.03 0.49 0.19 0.08 0.02
Small_Intestine 0.57 0.21 0.09 0.02 0.44 0.17 0.07 0.02
Stomach 0.53 0.20 0.09 0.02 0.49 0.19 0.08 0.02
Colon 0.81 0.28 0.11 0.03 0.54 0.20 0.08 0.02
Adrenals 0.26 0.11 0.05 0.02 0.14 0.07 0.04 0.01
Bladder 0.37 0.15 0.06 0.02 0.36 0.14 0.06 0.02
Bone 2.27 0.56 0.20 0.04 1.75 0.45 0.16 0.04
Breast 4.08 1.02 0.34 0.06 1.31 0.41 0.15 0.04
Esophagus 0.53 0.21 0.09 0.03 0.42 0.17 0.08 0.02
Heart 0.44 0.18 0.08 0.02 0.60 0.23 0.10 0.03
Kidneys 0.43 0.17 0.08 0.02 0.33 0.14 0.06 0.02
Lens 10.76 1.85 0.54 0.09 12.57 1.82 0.52 0.09
Liver 0.67 0.24 0.10 0.03 0.44 0.17 0.07 0.02
Lungs 1.74 0.55 0.20 0.05 0.94 0.33 0.13 0.03
Muscle 1.98 0.57 0.20 0.04 1.91 0.55 0.20 0.04
Pancreas 0.26 0.11 0.05 0.02 0.15 0.07 0.04 0.01
Retina 3.27 0.87 0.29 0.06 0.27 0.11 0.05 0.02
Salivary_Glands 5.99 1.13 0.35 0.06 2.74 0.76 0.26 0.05
Spleen 0.68 0.25 0.10 0.03 5.94 1.09 0.34 0.06
Thymus 1.51 0.48 0.18 0.04 0.52 0.20 0.08 0.02
Thyroid 2.39 0.64 0.22 0.05 0.51 0.20 0.09 0.03
Trachea 1.44 0.45 0.17 0.04 1.18 0.38 0.14 0.03
Uterus 0.23 0.10 0.05 0.02 1.05 0.35 0.14 0.03

Female Male
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1.  Reviews of Human Data in Patients and Accident Victims 
 
ARS involves exposure to high doses of radiation received over a large portion of the 

body in a very short window of time. Scenarios where this type of exposure could occur include 
nuclear power plant accidents, mishaps with irradiations used for sterilization purposes, military 
personnel in the event of a nuclear bomb detonation, and the general population should a terrorist 
attack occur that involves nuclear devices (Waselenko et al. 2004; Pellmar et al. 2005). Evidence 
of ARS in humans from low-LET radiation, such as gamma- or X-ray exposures, has been 
thoroughly reviewed and documented in the reports that have been generated by regulatory 
bodies such as the NAS, the National Council on Radiation Protection (NCRP), the International 
Commission on Radiological Protection (ICRP), the National Research Council (NRC), and the 
U.S. Nuclear Regulatory Commission (NAS/NRC 1967; NCRP 1982, 1989a, 1993, 2000; Baum et 
al. 1984; Evans et al. 1985;ICRP 2000, 2002, 2012; NRC 2008) (Category IV). Data accumulated 
over the last half-century that were used in the construction of the dose threshold for ARS were 
derived from the following studies: studies on the Japanese atomic bomb survivors (Ishida and 
Matsubayashi 1948; Ohkita 1975;Oughterson and Warren 1956), case studies of nuclear accident 
victims (Blakely 1968; Vodopick and Andrews 1974;Gilberti 1980), and records of total-body 
irradiated therapy patients for cancer and other diseases (Adelstein and Dealy 1965;Brown 
1953; Warren and Grahn 1973).  More recent events include the Chernobyl accident in 1986 
(Bouville et al. 2006), an accident that occurred in Tokai-mura, Japan, in 1999 (Hirama et al. 
2003), and the death of a Russian citizen after a possible internal overdose of radioactive 
materials as reported in the media in 2006.  

ARS appears in various forms and has different threshold doses for onset of the possible 
effects. A previous definition of the threshold dose consisted of an exposure below which 
clinically significant effects do not occur (NCRP 2000). However, the ICRP has recently 
redefined a threshold dose as the dose required to cause a 1% incidence of an observable effect 
(ICRP 2007, 2012). 

Radiation exposure induces physiological responses in many organ systems such as the 
hematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, 
nervous, and digestive systems, as well as the urinary tract, skin, and eye. However, the early 
effects (from the first hours to several weeks after exposure) are mainly manifested in the 
hematopoietic, cutaneous, gastrointestinal, and neurovascular systems (ICRP 2012). The 
threshold whole-body dose for ARS is approximately 0.1 to 0.2 Gy for radiation that is delivered 
under acute conditions where dose rates exceed 1 Gy/hr (ICRP 2012). At lower dose rates, a 
reduction in effects (which are described below) is seen. People at the extremes of age (children < 
12 years and adults > 60 years) may be more susceptible to irradiation and have a lower LD50/60 
(Hall 2006) 

Doses that are in the range of 0.5 to 1 Gy cause minor acute damage to the hematopoietic 
system and mild prodromal effects (nausea, vomiting, anorexia, and fatigue) in a small number of 
irradiated persons (Anno et al. 1989). In the acute dose range of 1 to 2 Gy, prodromal effects and 
injury to the hematopoietic system increase significantly; however, most victims will probably 
survive, with only 5% lethality in a population after doses of about 2 Gy (NAS/NRC 1967; 
McFarland and Pearson 1963). Survival is also possible within the dose range of 2 to 3.5 Gy, but 
prodromal effects become more pronounced, decreasing in latency and increasing in severity. As 
the dose reaches about 3.25 Gy, 50% of exposed people may die within 60 days if appropriate 
medical care is not administered (Lushbaugh 1969). From 3.5 to 5.5 Gy, symptoms are even more 



 

12 

severe and affect nearly all who are exposed. If untreated, 50% to 99% of those who are exposed 
may die primarily because of extensive injury to the hematopoietic system that is manifested by 
overwhelming infections and bleeding (NAS/NRC 1967; Lushbaugh 1969; Messerschmidt 1979). 
At this dose range, permanent sterility occurs in both males and females (Paulsen 1973; NCRP 
1989a).   

Responses to doses between 5.5 and 7.5 Gy begin to reflect the combined effects of 
gastrointestinal and hematopoietic damage. Survival is almost impossible without a compatible 
bone marrow transplant and/or extensive medical care. Nearly everyone who is irradiated at 
these doses suffers severe prodromal effects during the first day after exposure. When doses 
range between 7.5 and 10 Gy, injuries are much more severe due to a greater depletion of bone 
marrow stem cells (Adelstein and Dealy 1965; Lushbaugh 1962), increased gastrointestinal 
damage, and systemic complications from bacterial endotoxins entering the blood system. 

Doses that are between 10 and 20 Gy produce early post-exposure renal failure 
(Lushbaugh 1974). Death results in fewer than 2 weeks from septicemia due to severe 
gastrointestinal injury, which is complicated by complete bone marrow damage and the cessation 
of granulocyte production (Lushbaugh, 1962). Above approximately 13 Gy, death may occur 
sooner from electrolyte imbalance and dehydration due to vomiting and diarrhea, especially in 
hot and humid conditions. Extremely severe gastrointestinal and cardiovascular damage causes 
death within 2 to 5 days after doses of 20 to 23 Gy (Lushbaugh 1969). 
 
2. Organ-Specific Manifestations of the Acute Radiation Syndrome  

 
The manifestation of ARS reflects the disturbance of physiological processes of various 

cellular groups damaged by radiation. Hematopoietic cells, skin, intestine, and vascular 
endothelium are among the tissues of the human body most sensitive to ionizing radiation. Most 
ARS effects are directly related to these tissues, as well as the coupled regulation and adaptation 
systems (nervous, endocrine, cardiovascular systems) (Guskova et al. 2001). Four sub-syndromes 
are identified: hematopoietic syndrome, cutaneous syndrome, gastrointestinal syndrome, and 
neurovascular syndrome. It is generally agreed that there are three phases in the development of 
the ARS: the prodromal phase, the latent phase, and the manifest phase. The severity and duration 
of each of these phases are dependent on the dose and dose rate. The prodromal phase refers to the 
first 48 hours after exposure, but it may persist for up to 6 days (Alexander et al. 2007). The 
syndromes are dose-dependent and include hematopoietic depression, gastrointestinal distress 
(nausea, vomiting, and/or diarrhea), and neurological symptoms (including fatigability, weakness, 
headache, impaired cognition, disorientation, ataxia, seizures, and hypotension). The latent phase 
lasts about 2 to 20 days, with a seeming improvement of most syndromes (except cytopenia) and 
duration correlating inversely with the absorbed dose. The manifest phase lasts from 2 to 60 days, 
with signs and symptoms expressed by various organs and profound immune suppression 
predisposing the body to infection and sepsis. This phase is critical for radiation injury. Most 
patients surviving this phase will recover but are still at risk for intermediate effects such as 
pneumonitis and late effects (NCRP 2006; Guskova et al. 2001).  

Based on the historical record of SPE fluence and likely shielding conditions, the most 
probable ARS effects from SPE exposure during spaceflight that can potentially affect mission 
success are the clinical symptoms associated with the prodromal phase of mild hematopoietic 
syndrome (nausea, vomiting, anorexia, and fatigue) occurring within the first 48 hrs following 
exposure, along with skin injury and depression of the BFOs (NAS/NRC 2006; Wilson et al. 
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1997). In general, symptoms develop within a few hours of radiation exposure and rarely exceed 
24 hrs following low-LET radiation exposure (Fajardo et al. 2001). Exposure to higher doses 
results in greater severity, early onset, and longer duration of the symptoms (Anno et al. 1996). 
During spaceflight, the potential for a higher dose to the skin with associated changes in immune 
status may occur due to the inhomogeneous dose distribution associated with SPE exposure that 
may alter the threshold dose and time course for ARS. From ground-based observations, it is 
known that recovery from ARS can be hindered by changes in immune status, including those 
resulting from combined skin burns and other trauma (Fliedner et al. 2001). Therefore, 
understanding the effects of a higher skin exposure relative to the BFO on the hematopoietic and 
immune systems is important, as is the potential impact of microgravity and other spaceflight-
associated changes to the immune system. 

Significantly smaller amounts of data are available for prodromal effects from continuous 
exposure at lower dose rates. The current knowledge that has been collected from studies on 
victims who were exposed to radioactive fallout following the testing of nuclear devices and to 
other sources (Kumatori et al. 1980; Cronkite et al. 1956) is that dose rates of perhaps less than a 
few tens of mGy/h are probably not sufficient to cause ARS. However, continuous dose rates 
of around 100 mGy/h are probably high enough to cause significant vomiting within a period of 
approximately 1 day. Accordingly, between a few tens of mGy/h to approximately 100 mGy/h, a 
considerable amount of uncertainty exists concerning the human response to continuous radiation 
exposure, which is likely due to variations in the sensitivity of individuals as well as the quality 
of the very limited amount of existing data. 

a. Hematopoietic Syndrome 

Hematopoietic syndrome is characterized by a drop in the number of blood cells, 
generally at doses above 1 Gy to the bone marrow; however, mild symptoms may occur with 
doses as low as 0.3 Gy in susceptible individuals. The effects of radiation on hematopoiesis have 
been well-characterized in humans and animals for several decades (Bond et al. 1965). This is 
due to the pioneering work of applying the radiation ablation technique to identify hematopoietic 
stem cells (HSCs) (Till and McCulloch 1961), a small pool of pluripotent cells residing in bone 
marrow of the skeleton. While they have unlimited replication and pluripotent differentiation 
potential, HSCs are very radiosensitive. Their D0 (the dose required to reduce the surviving 
fraction to 37% of that associated with the previous dose) was determined experimentally (in 
vivo and in vitro) to be between 0.6 and 1.6 Gy (Fliedner et al. 2002). Studies on human victims 
of radiation accidents indicate that the hematopoiesis system cannot recover from a traumatic 
event that kills more than 99% of these cells and that the resulting damage can only be overcome 
by a timely transfusion of compatible HSCs. On the other hand, lower doses of radiation will 
leave a sufficient number of these self-renewing cells intact, such that complete recovery can be 
achieved with time (Fliedner et al. 2002). 

The manifestation of the hematopoietic syndrome is different in specific cell lineages. 
This is due to variations in compartment transit times, the mean and ranges of the quantities of 
mature cells in the peripheral blood, and the mean cell lifetimes of different cell lineages.  

Normal human erythrocytes are radioresistant and have a lifespan on the order of 120 
days. Therefore, even after a complete ablation of all erythropoietic development, the decline of 
erythrocytes in peripheral blood is about 1:120 per day, and after 30 days, the blood erythrocyte 
concentration declines to about 70% of normal values. Therefore, even after moderate- or high-
dose total body irradiation (TBI) or partial body irradiation (PBI), anemia is usually not a 
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significant clinical problem (Fliedner et al. 2001). On the other hand, reticulocyte lifespan in 
blood is about 1-3 days, and cell counts after radiation exposure show modulations similar to 
those of granulocytes and other radiosensitive cells. 

Granulocytes are also radioresistant, but they disappear from the blood in a random 
fashion with a half-life of 6.6 hours (Fliedner et al. 2001). A unique feature of granulopoiesis is 
that a reserve pool exists in the bone marrow, where mature granulocytes can stay for a period of 
time depending on the demand in the peripheral blood (Babior and Golde 2001). It is known that 
the total transit time from the stem cell to the mature granulocyte in the marrow is 9–10 days. As 
mature granulocytes are radioresistant, after exposure, the granulocyte concentration in blood 
does not decrease immediately but increases to a magnitude proportional to the absorbed dose in 
the early stage (i.e., granulocytosis). For lethal doses, the granulocytes are completely depleted 
from blood between days 5 and 6; for moderate dose, the granulocyte concentration declines 
until reaching an abortive rise at around day 10, followed by a nadir around days 25-30 and a 
subsequent recovery (Fliedner et al. 2002). The dynamics of granulocyte cell counts in blood 
after radiation exposure reveals the extent of hematopoietic damage (Hu and Cucinotta 2011b). It 
has been established that all types of granulocytes (neutrophils, eosinophils, and basophils) are 
important to provide immune protection to the body. In animal experiments, the time of severe 
granulopenia is closely related to the species-dependent time of lethality (Bond et al. 1965). It is 
therefore essential to provide supportive care to victims to fight infections during the 
granulopenia period and apply techniques such as cytokine and cellular therapies to promote 
granulocyte proliferation (Singh et al. 2012).  

The dynamics of platelets (thrombocytes) in blood after radiation exposure is very similar 
to that of granulocytes. Lethal doses also induce “essentially irreversible” injury to the 
thrombopoietic system and cause declining platelet counts progressively and rapidly to critical 
low levels below 50,000 per mm3 within 10-12 days, which corresponds to the maximum 
lifespan of a platelet. For moderate doses, the pattern of the dynamics of platelets is 
characterized by a slowly declining shoulder lasting 10 to 15 days after exposure, followed by a 
nadir between 25 and 30 days and final recovery beyond day 30 and 35 (Fliedner et al. 2002). 
Thus, the severity and duration of thrombopenia are dose-dependent, and a quantitative 
relationship between platelet counts and the absorbed dose of an exposed victim can be 
established based on previous accidental patient data (Smirnova 2012). Reduced platelet counts 
in patients are clinically manifested by an increased tendency for bleeding. Therefore, it is 
important to provide medical support and therapeutic interventions to help patients survive 
through the period of reduced platelet concentrations.  

Although the average lifespan of a lymphocyte in blood is about 4.4 years (Fliedner et al. 
2002), lymphocytes are the most radiosensitive cell in peripheral blood. A radiation exposure 
resulting in a severe or lethal hematopoietic syndrome is characterized by a marked initial 
lymphocyte depression within the first hours. It has been proposed that this high sensitivity is 
due in part to the migration of lymphocytes from the circulation to lymph tissues and vice versa 
(Fliedner et al. 2001), or to the radiation-induced apoptosis of mature lymphocytes in peripheral 
blood (Belka et al. 1998). In contrast to other cell lineages, mature lymphocytes recirculate 
between the blood vessels and lymphatic vessels (Gowans 1959). The capillary bed where 
lymphocytes transit from blood to the lymphatic tissue and back to the blood is highly sensitive 
to radiation (Stodtmeister et al. 1956). Due to these characteristics of the lymphopoietic system, 
monitoring the changes in lymphocyte counts after exposure is regarded as the most practical and 
best laboratory test to estimate radiation dose (Dainiak 2002). There are two widely used 
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empirical methods for early estimation of the exposed dose after radiation accidents (Blakely et 
al. 2005). Past accidental records indicate that full recovery of normal lymphocyte levels in 
blood takes longer than other cell lineages (Hu et al. 2012). All types of lymphocytes are 
important components of the immune system, and lymphopenia reduces the body’s capability to 
handle exogenous and endogenous cytotoxic agents.  

b. Cutaneous Syndrome 

Cutaneous syndrome describes the complex pathophysiological response of the skin 
following radiation exposure. Skin damage is commonly associated with ARS, but it is also 
possible to receive skin damage without development of ARS from exposure to beta radiation or 
x-rays. The skin epidermis is the outermost surface of the body and functions as a barrier to 
protect from dehydration, mechanical stress, and infections. It undergoes constant turnover 
through continuous self-renewal and differentiation of a small population of epidermal stem cells 
(Blanpain and Fuchs 2009). These underlying proliferative cells are sensitive to radiation and can 
be injured and depleted by high-dose exposures. Radiation damage to skin includes erythema, 
pigmentation, and dry and moist desquamation in the early phase (< 4 weeks) and atrophy and 
fibrosis (or necrosis) in the later phase (> 6 weeks) (NCRP 1989b). The ED10 (dose at which 10% 
of a population exhibits the effect) has been estimated to be 4 Gy for erythema and 14 Gy for the 
more serious moist desquamation (Haskin et al. 1997; Strom 2003). 

Epidermis of all regions is formed with a type of stratified structure. The skin epidermis 
is separated from the underlying dermis by a layer of basement membrane. The maintenance of 
the overall cell population is accomplished by the epidermal stem cells in the basal layer, which 
can both self-renew over their lifespan and differentiate progressively upward to generate 
multiple suprabasal layers. Most cells in the first suprabasal layer are capable of dividing, like 
the cells in the basal layer, and are radiosensitive. The non-dividing cells in the upper layers are 
transcriptionally active but gradually lose cytoplasmic organelles and transit to the outmost 
stratum corneum,  which are essentially dead cells cross-linked by transglutaminase (Fuchs and 
Horsley 2008). Though as thin as only several layers of cells (about 40-60 µm), these radio-
resistant cells can significantly reduce the radiation dose across the epidermis, especially for 
radiation with a high β-ray component (Fliedner et al. 2001). Investigations indicate that the 
homeostasis and radiation response of the epidermis are delicately controlled by the proliferation 
kinetics of various types of cells as well as the spatial organization of the tissue (Archambeau et 
al. 1979; Hu and Cucinotta 2014). 

During spaceflight, the skin may receive a dose that is up to a magnitude greater than that 
received by internal organs from an SPE during an EVA when minimal protection is available 
(Kim et al., 2006a). Risks of concern include erythema, moist desquamation, and epilation 
(NCRP 1989). The ED10 has been estimated to be 4 Gy for erythema and 14 Gy for the more 
serious moist desquamation (Strom 2003; Haskin et al. 1997). Protraction of the exposure 
increases the dose that is required for a given degree of severity by a factor of about 3. The response 
of the skin depends on the number of exposures, the total dose, the dose per exposure, and the 
volume of tissue that is irradiated (Turesson and Notter 1984). It has been noted that 
deterministic radiogenic skin injury complicates the treatment of many of the high-dose 
casualties at Chernobyl (Strom 2003). Skin doses during an SPE can vary more than five-fold for 
different regions of the skin due to the steep dose gradients that are found in the solar proton 
energy spectra (Kim et al. 2006a). 
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c. Gastrointestinal Syndrome 

The gastrointestinal (GI) system performs many integrated functions, such as absorption 
of fluid and electrolytes, breakdown and absorption of nutrients, and excretion of normal and 
toxic metabolites. The radiosensitivity of this system comes from the epithelial cell lining, which 
is present throughout the entire gastrointestinal tract. These cells undergo constant renewal that 
requires rapid cell turnover. They are thus dependent on the functionality of a pluripotent stem 
cell population localized in the crypts of Lieberkuhn. Exposure to high doses of radiation (> 4 
Gy) results in the loss of these intestinal crypts and breakdown of the mucosal barrier 
(Wasalenko et al. 2004).   

Early gastrointestinal symptoms include nausea, vomiting, anorexia, and diarrhea, which 
may occur within hours after exposure. Nausea and vomiting may stem from effects on the 
periphery and subsequent stimulation of higher nervous centers or from a response of the CNS. 
However, if these symptoms occur during the first few hours after exposure, the role of the 
central/peripheral nervous system is probably predominant. This is also true for the early onset of 
diarrhea. Early nausea and vomiting are signs of severe exposure, and early diarrhea indicates 
very severe damage that usually leads to death (Conklin and Walker 1987).  

The late symptoms of gastrointestinal syndrome include abdominal cramps and diarrhea, 
which appear 1-2 weeks after exposure. All symptoms relate to a major loss of the stem cell 
population in the crypts and subsequent lack of ability to repopulate and to maintain the 
epithelial barrier (Fliedner et al. 2001). The occurrence of profuse and/or bloody diarrhea is 
linked to the denudation of the GI mucosa as well as to thrombocytopenia due to the impairment 
of the hematopoietic system (see above). This results in increased loss of fluid and electrolytes 
and possible entry and action of enteric (pathogenic and non-pathogenic) bacteria, thus leading to 
infection, dehydration, and electrolyte imbalances that are life-threatening.  

d. Neurovascular or CNS Syndrome 

Even though the CNS is generally considered to be composed of radioresistant tissue, 
exposure to moderate or high doses of radiation can result in a neurovascular syndrome. The 
CNS has higher regulatory control mechanisms, which have been shown to be functionally 
radioresponsive. Abnormal electroencephalograms have been reported following exposure to 
low-dose radiation, indicating the disturbance of brain activity (Gangloff 1964). Some symptoms 
occur almost immediately after exposure and include severe nausea, vomiting, diarrhea, 
disorientation, and ataxia.  Within hours following the prodromal period, other symptoms may 
manifest, including headaches, hypotension, and fever; within weeks, neurological and cognitive 
deficits may become evident (Fliedner et al. 2001). The underlying pathophysiology is believed 
to be related to cerebral edema, inflammation, and massive endothelial damage to the 
microcirculatory system (Fliedner et al. 2001; Goans et al. 2012). Supportive care may include 
antiemetics, antiseizure medications, anti-inflammatory agents, mannitol, and furosemide (Feyer 
et al. 2005, 2014; Goans et al. 2012). 

Symptoms such as nausea, vomiting, and anorexia characterize the prodromal phase of 
ARS and are essential identifying signs for the triage of irradiated persons (Sine et al. 2001). 
Though these clinical symptoms are expressed by the gastrointestinal system, they are 
physiologically controlled by the CNS (Scarantino 1994). The entire process involves key 
components of the CNS, including areas in the hindbrain and the abdominal vagal afferents. 
Areas in the hindbrain were previously thought of as a vomiting center that controls all afferent 
impulses that can initiate emesis (Wang and Borison 1950). The current concept regarding this 



 

17 

coordination process is that it is controlled not via an anatomical unit but through a number of 
loosely organized areas within the medulla, which are termed the “central pattern generator” 
(Hornby 2001). They generate efferent signals that are sent to relevant organs and tissues to 
induce vomiting after receiving a stimulus from the dorsal vagal complex located in the dorsal 
brain stem, which contains receptors for several neurotransmitters with potentially important 
roles in the emetic response. These receptors include the neurokinin-1, 5-HT3, and dopamine-2 
receptors, which bind to substance P, 5-HT, and dopamine, respectively. These neurotransmitters 
are released from the enteroendocrine cells located in the gastrointestinal mucosal of the 
proximal small intestine once exposed to whole-body irradiation or large volume partial body 
irradiation. They bind to the appropriate receptors on the adjacent vagal fibers, leading to an 
afferent stimulus that terminates in the dorsal brain stem. Other sources of afferent input have 
also been proposed, which include the area postrema (Miller and Leslie 1994; Borison 1989) and 
structures in the limbic lobe, such as the amygdala (Zagon et al. 1994; Strominger et al. 1994; 
Horn et al. 2007).  

Fatigue and weakness are also common syndromes in accident and/or radiotherapy 
patients, and they last much longer than the nausea and vomiting symptoms. They are known to 
be more distressing and can negatively affect cognitive performance, mood, and physical 
function (Curt 2000). There are many factors, acting independently or interactively, that are 
likely involved in the development of fatigue and weakness. Recent research on cancer patients 
and in animal experiments have led to several plausible hypotheses regarding the mechanism of 
radiation-induced fatigue and weakness. One hypothesis is that radiation causes an increase in 
brain serotonin (5-HT) levels and/or upreguation of a population of 5-HT receptors, leading to 
reduced somatomotor drive  and working capacity (Andrews et al. 2004). 5-HT has numerous 
functions, including appetite control, sleep, memory, learning, temperature regulation, mood, 
behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Its 
role in fatigue development has been verified in investigations of exercise-induced fatigue and 
chronic fatigue syndrome (Ryan et al. 2007). Another potential mechanism of fatigue is related 
to the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is the central 
regulatory system controlling the release of cortisol, a stress hormone that regulates blood 
pressure, cardiovascular function, carbohydrate metabolism, and immune function. 
Investigations of breast cancer survivors indicated that women who experienced fatigue had 
significantly lower serum cortisol levels than those who did not report fatigue (Bower et al. 
2002). Alterations of the HPA axis by radiation are evident in previous studies (Schmiegelow et 
al. 2003). In addition to these hypotheses proposed based on clinical and animal studies, vagal 
afferent nerve activation, proinflammatory cytokine dysregulation, and comorbid condition (e.g., 
anemia, cachexia, depression, and sleep disorder) are also suspected to play roles in the 
development of fatigue (Ryan et al. 2007). It is generally accepted that the mechanism of 
radiation-induced fatigue and weakness is multifactorial and involves the dysregulation of 
several interrelated physiological, biochemical, and psychological systems. 

 
3. Hereditary and Fertility Effects 

NASA, in past reviews, has included the risks of hereditary, fertility, and sterility effects 
under the discussion of acute radiation risks. Although there is no perfect match of these effects 
with any of the four major radiation risks (acute, cancer, degenerative, and CNS) identified by 
the NASA Human Research Program, based on the past reviews of these effects (NCRP 1989a, 
2000), they alone are not likely to rise to the level of a major concern. Because SPEs would be 
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the primary cause of hereditary and fertility effects, these items are included as part of the acute 
category of risks. 

Comprehensive reviews of the literature regarding heritable genetic risks associated with 
radiation exposure have been published by the United Nations Scientific Committee on the 
Effects of Atomic Radiation (UNSCEAR 2001) and by the Committee to Assess Health Risks 
from Exposure to Low Levels of Ionizing Radiation (NRC 2006). No evidence of hereditary 
risks has been reported from human studies, largely on the children of the victims in Hiroshima 
and Nagasaki (Neel et al. 1990; Nakamura 2006). However, growth retardation and other health 
effects have been reported in the progeny of mice exposed to radiation (Cattanach et al. 1993; 
Nomura et al. 2004). 

For humans, mutations at specific minisatellite loci have also been investigated in the 
children born to parents exposed to radiation (BEIR VII 2006). These loci do not code for 
proteins, and changes in them are not associated with adverse health effects. Studies on the 
populations living in Belarus and Ukraine after the Chernobyl accident, and in the Semipalatinsk 
nuclear test site, have reported increased mutation rates at the loci for estimated parental gonadal 
doses ranging from 20 mSy to 1 Sv (Dubrova et al. 1996; Dubrova et al. 2002). However, other 
studies on the children of Chernobyl clean-up workers and children of A-bomb survivors failed 
to identify an increase in the minisatellite mutation frequency (Livshits et al. 2001; Kodaira et al. 
1995). Similarly, genetic studies, including investigations of chromosome aberrations, in the 
offspring of A-bomb survivors indicate no effects of radiation from parental exposures 
(Nakamura 2006). 

Exposure to space radiation may result in reduced sperm counts and changes in other 
semen characteristics. Human germ cells, which include sperm cells and oocytes, are sensitive to 
radiation. Spermatogenesis has been detected in cancer patients who received testicular doses of 
0.2 - 0.8 Gy from scattering radiation (Centola et al. 1994) and in experimental rodents after 
radiation exposures at doses as low as 0.01 Gy (Sapp et al. 1992). A single acute exposure to 
low-LET radiation at testes doses of 0.5 Gy could cause temporary sterility, with recovery 
periods dependent on the dose (Yarbro and Perry 1985). Doses above 6 Gy may cause permanent 
infertility (Schover 2005; Meistrich 2013). Testicular damage has also been reported for 
exposures at low dose rates in animal studies (Gong et al. 2014). In a human study, direct 
comparison of the semen characteristics between the health workers occupationally exposed to 
ionization radiation and the control group revealed significant differences in motility 
characteristics, viability, and morphological abnormalities (Kumar et al. 2013).  

Newborn girls have a finite number of about 2 million oocytes, which become reduced 
with increasing age (Ogilvy-Stuart and Shalet 1993). Radiation is known to damage human 
oocytes, with an estimated low-LET dose of 2 Gy to the ovary destroying 50% of immature 
oocytes (Wallace et al. 2003). Women who are older than 40 years at the time of exposure will 
have a smaller pool of remaining oocytes; doses in the range of 4-7 Gy for low-LET radiation 
may cause permanent infertility in this cohort of women from a single exposure (Ogilvy-Stuart 
and Shalet 1993). The estimated dose causing permanent sterility in young women exposed 
chronically is 20 Gy (Ogilvy-Stuart and Shalet 1993). Temporary or reduced fertility may occur 
at acute doses as low as 1.25 Gy (Damewood and Grochow 1986). Limited high-LET data 
indicated greater effectiveness of neutrons in inducing apoptosis in the oocytes of female mice 
(Nitta and Hoshi 2003). 

Temporary sterility for male astronauts may be the worst potential outcome if the testes 
receive a dose of greater than 0.5 Gy during a SPE. For female astronauts, the doses received 
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during a large SPE may cause a reduction of the remaining oocyte number. Whether such a 
reduction will impact the ability to conceive after a mission will depend on the age of the 
astronaut at the time of radiation exposure and other factors such as the dose rate. However, 
doses to the ovaries are estimated to remain well below 0.3 Gy for most shielding configurations 
and historical SPE events (https://oltaris.larc.nasa.gov/). No human data so far have indicated an 
inheritance of diseases from parents exposed to low-LET radiation, and no human data are 
available for high-LET radiation. Preserving the germ cells prior to a space mission can reduce 
any potential reproductive or hereditary radiation risks in the astronauts.  

  
B. Ground-based Studies on Acute Radiation Effects 
 
1.  RBE and Dose Rate Studies in Mice, Rats, Ferrets, and Larger Species 

 
The data for ARS as a result of exposure to high-LET radiation, e.g., neutrons and heavy 

ions, are collected primarily via animal studies. As mice and rats do not display the prodromal 
effects such as vomiting, limited research on this particular ARS has been performed on ferrets 
using HZE radiation. Rabin et al. (1992, 1994) studied the dose response of 600 MeV/n 56Fe 
ion-induced emesis in ferrets and compared it with the dose response from other radiation types. 
Over the dose range of 0.2 to 0.5 Gy, fission spectrum neutrons and 56Fe ions were more 
effective than 60Co gamma-rays in inducing emesis, and the effects of the 56Fe ions and fission 
neutrons could not be distinguished from each other. 60Co gamma-rays were significantly more 
effective in producing emesis compared with high-energy electrons or 200-MeV protons. The 
dose rates ranged from 0.1 to 1 Gy/min. The relatively large difference in LET between 56Fe ions 
and fission neutrons was not associated with any difference in the effectiveness with which the 
two types of radiation produced emesis. As discussed above, the dose due to high-LET radiation 
is expected to be relatively small.  More recently, animal model systems have been utilized to 
evaluate acute effects from exposure to SPEs including the following biological endpoints 
related to ARS: vomiting (and/or retching) and white blood cell counts in ferrets; white blood 
cell counts, fatigue, and immune system parameters in mice; and skin injury, with accompanying 
immune system changes and white blood cell counts in the Yucatan minipig. In addition, the 
effects of combined exposure to simulated microgravity and space radiation on blood cell counts 
and immune system functions with respect to both the innate immune system and the acquired 
immune system were evaluated in mice (Kennedy 2014). Research focused on characterizing the 
ARS response in animals exposed to SPE-like space radiation as well as the evaluation of known 
countermeasures for these effects.  

For hematopoietic effects, significant decreases in white blood cell counts were observed 
in mice, ferrets, and pigs irradiated at high and low dose rates, ranging from doses of 25-50 cGy 
up to 2 Gy (Ware et al. 2010; Maks et al. 2011; Wilson et al. 2011; Gridley et al. 2011;  Romero-
Weaver et al. 2013; Sanzari et al. 2013a). However, regarding SPE radiation effects on blood cell 
counts, the findings in mice, ferrets, and pigs were not comparable. The RBE values were very 
different in the three species with respect to blood cell counts measured after animal exposure to 
SPE radiation. The RBE values measured in ferrets and pigs were considerably larger than those 
calculated for mice (Maks et al. 2011; Sanzari et al. 2013c, 2014). For many endpoints in these 
studies, the RBE values increased with lower doses of SPE radiation in the dose ranges evaluated 
(Sanzari et al. 2013e). At doses of 25 cGy to 2 Gy of SPE proton radiation, ferrets had increased 
bleeding times beginning shortly after irradiation. By 13 days after receiving a dose of 2 Gy SPE 
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proton, the ferrets had severe clotting abnormalities and many of the irradiated ferrets developed 
symptoms of disseminated intravascular coagulation (Krigsfeld et al. 2012, 2013a, 2013b). This 
is probably due to the significant decline of platelet concentrations in peripheral blood after 
irradiation. 

For neurovascular effects such as vomiting and retching, increases were observed in 
ferrets irradiated at high and low dose rates, starting at doses of 75 cGy and up to 2 Gy (Sanzari 
et al. 2013b). Gamma-ray and proton irradiation delivered at a high dose rate of 0.5 Gy/min 
induced dose-dependent changes in the endpoints related to retching and vomiting. The 
minimum radiation doses required to induce statistically significant changes in retching- and 
vomiting-related endpoints were 0.75 and 1.0 Gy, respectively, and the RBE of proton radiation 
at the high dose rate did not significantly differ from 1. Similar but less consistent and smaller 
changes in the retching- and vomiting-related endpoints were observed for groups irradiated with 
gamma-rays and protons delivered at a low dose rate of 0.5 Gy/h. Because this low dose rate is 
similar to a radiation dose rate expected during a SPE, these results suggest that the risk of SPE 
radiation-induced vomiting is low and may reach statistical significance only when the radiation 
dose reaches 1 Gy or higher (Sanzari et al. 2013b). 

Several studies analyzed the effects of space radiation alone and combined with modeled 
microgravity on immune system parameters. Alterations in the immune system related to the 
gastrointestinal tract were observed in mice exposed to both gamma-rays and SPE-like proton 
radiation. Irradiated mice exhibited breaks in the intestinal epithelial barrier that allowed the 
entry of bacteria and bacterial products into the circulation and their dissemination in the body 
(Ni et al. 2011). These effects appear to be exacerbated when combined with modeled 
microgravity in hindlimb-unloaded animals (Zhou et al. 2012).  

In other studies performed with radiation +/- hindlimb unloading in mice, it was observed 
that the splenic T lymphocyte population is significantly decreased in the irradiated + HU group 
(compared with the non-treated control group). The results also indicated that splenic T cells that 
were isolated and exposed to exogenous activation in the irradiated +/- HU groups had a reduced 
ability to become activated (compared with the results from the HU group and the non-
suspended, sham-irradiated group) (Sanzari et al. 2013d).  

Acute research studies will provide critical quantitative biological data for the further 
development of probabilistic risk assessment tools. Extrapolation of animal results to humans is 
essential to quantify crew risk. The dose response relationships measured for these endpoints 
need to be compared mathematically with published results for human subjects to approximate 
the dose threshold for an equivalent response in humans in such a way that the predictive value 
of these animal models can be utilized to accurately assess the potential risks to humans in 
various adverse scenarios. Future research will emphasize the likelihood of a compromised 
immune system due to high skin doses from a SPE or due to synergistic space flight factors (e.g., 
microgravity) and the possibility of increased risk to the BFO at relevant doses, evaluating 
thresholds at and around the permissible limits identified in Table 1. 
 
2. RBE and Dose Rate Studies of Cell Inactivation 

Because some of the ARS effects are related to cell killing or tissue damage, the RBE and 
dose rate data for cell inactivation by protons can provide insight for understanding ARS 
resulting from SPE exposures (Cucinotta 1999; Yang 1999). Early results of cell inactivation by 
charged particles over a wide range of LET have been reviewed by Ainsworth (1986). In general, 
the RBE for cell inactivation in vitro peaked at an LET of around 100 keV/µm, and the peak 
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RBE value varied between 1.5 and 5 for different cell types. The maximum RBE for in vivo 
responses tended to be lower and occurred at a lower LET value compared with the in vitro data. 
The reported RBE-LET relationship for in vitro cell killing showed similar trends to those of the 
early in vivo data (Furusawa et al. 2000). 

Factors that determine the dose rate dependence of ARS include: the kinetics of DNA 
repair, apoptosis, cell-repopulation and proliferation, and dose distributions across critical organs. 
Irradiation at lower dose rates is known to reduce the probability of lethality of ARS that is 
induced by low-LET radiation compared with acute irradiation, as illustrated in Figure 2. 
Differences between dose rate effects for protons and X-rays or gamma-rays may occur due to 
the heterogeneous dose contribution from slowing protons or recoil nuclei for SPE organ doses. 
The heterogeneous dose distribution across the bone marrow for protons should lead to a sparing 
effect that complicates comparisons with gamma-rays (where doses are more uniform). The dose 
distribution across the stomach and other organs in the gastrointestinal tract also varies several-
fold for SPEs, which complicates the use of gamma-ray data to predict prodromal risks from 
SPEs. 

 
 

 
 
Figure 2. Effects of medical treatment and dose rate on the LD50 for gamma radiation and the expected 
region of dose rates for SPEs during EVA (adapted from Haskin et al. 1997). 
 
 
V. Computer-Based Modeling and Simulation 
 

The possible acute health effects to interplanetary crews from large SPEs have previously 
been analyzed by several researchers. To our knowledge, the first evaluation was performed with 
a lethal-potentially lethal model (Curtis 1986). Another response model developed by the U.S. 
military for nuclear warfare (Jones 1981) was used to investigate the BFO effects after exposure 
of an August 1972 SPE (Wilson et al. 1997). In the following section, some recent efforts in the 
mathematical modeling of ARS in various systems are summarized.  
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A. Radiation-Induced Performance Decrement (RIPD) Models 
  

RIPD radiobiological models were developed by the Defense Nuclear Agency in the 
1980-90s (Anno et al. 1996) with the aim of providing a symptomatology basis for assessing 
early functional impairment of individuals who may be involved in civil defense and various 
military activities in the event of a nuclear attack. These models utilized six sign/symptom (S/S) 
categories of ARS: upper gastrointestinal distress (UG), fatigability and weakness (FW), lower 
gastrointestinal distress (LG), hypotension (HY), infection and bleeding (IB), and fluid loss and 
electrolyte imbalance (FL). In initial work (Anno et al. 1985), the severity of each of these S/S 
categories was described empirically as a function of absorbed dose and time-after-exposure for 
prompt exposures. In later work, physiologically-based models were developed (Anno et al. 
1991, 1996) and incorporated into the RIPD code (Matheson et al. 1995) to estimate the S/S 
severities for protracted exposures. Specifically, the UG model calculates the kinetics of the 
production and metabolic clearing of toxins within bodily fluids, the LG model calculates the 
cellular kinetics of intestinal mucosa, and the FW model calculates the kinetics of lymphocytes 
and the resulting cytokine production. Each model employs a set of differential (rate) equations 
emulating relevant biological processes and containing the radiation dose and/or dose rate as a 
driving term causing damage and/or illness. For each model, a variable such as a toxin level or a 
cellular population level determines the severity of symptoms. The model equations and 
parameters arise from basic research in radiobiology and radiation oncology, with all models 
adjusted based on the best available human data. 

The correlation of incidence as well as severity of various symptoms with exposed dose 
and dose rate was conducted by performing maximum likelihood prohibit analysis of empirical 
data (Anno et al. 1985). While severity is a measure of the effect on a particular individual, 
incidence is a population-based measure of the effect on a certain group, i.e., at some specified 
dose level, and incidence quantifies the proportion of individuals expected to respond according 
to a defined level of severity. The main body of empirical data includes effects of victims of 
nuclear radiation accidents and clinical accounts of cancer patients who received total body 
irradiation therapy from the 1940s to the 1980s. Each S/S category described above was scaled 
from 1 to 5 with descriptive levels of increasing severity based on medical records and common 
clinical practice, with Level 1 being normal and Level 5 representing the most severe state of the 
syndrome (Table 5) (Matheson et al. 1995). Then, a temporal response pattern for each syndrome 
was estimated for various ranges of prompt radiation exposure, including the onset, duration, and 
time-dependent severity. The protracted irradiation cases were treated similarly with 
consideration of sparing effects due to biological recovery that modify the level of response. 

RIPD models have been applied to assess various ARS effects on astronauts if they 
adversely encountered the August 1972 SPE (Hu et al. 2009). The inside-spacecraft modeling 
starts when the calculated dose rate exceeds 0.1 cGy-eq/h, which is considered by the RIPD 
software as the threshold required to cause human acute effects. From the calculation of the 
August 1972 SPE, a male crewmember behind a typical spacecraft shielding (5.0 g/cm2) would 
have 24 hrs of consecutive exposure above this limit (Figure 3). The peak BFO dose rate 
appeared at the 7th hour from the onset of organ-sensible flux, with a value of 12.34 cGy-eq/h 
(Figure 3b). The upper gastrointestinal (UG) response has a maximum value of 2.0 at the 16th 
hour and returns to normal after the end of this period (Figure 4). The UG syndrome is quite mild 
and has a low expected incidence of 2% (with 95% confidence limits of 0 to 35%). According to 
the RIPD documentation, only sensitive personnel would exhibit stomach upset, a clammy and 
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sweaty feeling, mouth-watering, and frequent swallowing. No vomiting would occur. A peak in 
fatigability and weakness (FW) severity of about 1.6 appears within a few hours after that of UG 
but persists and rises to a level of about 1.8 at 1000 hours. Both levels of severity indicate a 
rather mild FW response. The expected incidence of FW is 17% (with 95% confidence bounds of 
3 to 34%). The low incidence and severity of acute effects indicate that a typical spacecraft 
shielding (5.0 g/cm2) is sufficient to attenuate the SPE of the historical worst case to avoid acute 
injury to male crews (Hu et al. 2009) without seeking shelter in a more heavily shielded storm 
shelter (10 to 20 g/cm2). However, the persistence of the mild FW syndrome for such a long 
time period should be of concern for the health of astronauts in the high-risk environment of 
space.   

 
 
Table 5. Textual descriptions of the symptom severity level and acute radiation syndrome (adapted from 
Matheson et al. 1995). 
Severity 
level UG LG FW HY IB FL 

1 No effect No effect No effect No effect No effect No effect 

2 
Upset stomach, 
clammy and 
sweaty, mouth 
waters 

Feels 
uncomfortable 
urge to have 
bowel movement 

Somewhat 
tired, with 
mild 
weakness 

Slightly light-
headed 

Mild fever and 
headache 

Thirsty and has dry 
mouth, weak and 
faint 

3 
Nauseated, 
considerable 
sweating, swallows 
frequently to avoid 
vomiting 

Occasional 
diarrhea 

Tired, with 
moderate 
weakness 

Unsteady upon 
standing quickly 

Joints ache, 
considerable 
sweating, moderate 
fever, no appetite, 
sores in mouth and 
throat 

Very dry mouth and 
throat, headache, 
rapid heartbeat 

4 
Vomited once or 
twice, nauseated, 
and may vomit 
again 

Frequent diarrhea, 
cramps 

Very tired 
and weak 

Faints upon 
standing quickly 

Shakes, chills, and 
aches all over, 
difficult to stop any 
bleeding 

Extremely dry 
mouth, throat, and 
skin, very painful 
headache, difficult 
to move, short of 
breath, burning skin 
and eyes 

5 

Vomited several 
times, including the 
dry heaves, 
severely nauseated, 
and will soon vomit 
again 

Uncontrollable 
diarrhea and 
painful cramps 

Exhausted, 
with almost 
no strength 

In shock, 
breathing rapidly 
and shallowly, 
motionless, skin 
cold, clammy and 
very pale 

Delirious, 
overwhelming 
infections, cannot 
stop any bleeding 

Prostrate 
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Figure 3. The skin and BFO dose rates within a spacesuit during EVA (0.3 g/cm2) (a) and inside a 
spacecraft (5.0 g/cm2) (b). The unit is cGy/h for the skin dose rate and cGy-eq/h1 for the BFO dose rate 
(Hu et al. 2009). 

 

 
Figure 4. Acute response of male astronauts inside a spacecraft (5.0 g cm-2) after the August 1972 SPE 
(Hu et al. 2009). 
 

 
B. Hematopoietic Response Models 
   

The radiation-induced perturbation of the hematopoietic system has been intensively 
investigated for several decades (Bond et al. 1965), and attempts have been made to model this 
complex system via biomathematical methods (Steinbach et al. 1980; Wichmann and Loeffler 
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1985; Fliedner et al. 1996). However, these models are built upon a very detailed architectural 
organization from hematopoietic stem cells (HSCs) to mature blood cells, which are speculated 
to comprise up to 31 stages (Dingli et al. 2007)  and contain a large number of variables and 
coefficients that are difficult to determine experimentally. A set of coarse-grained hematopoiesis 
models introduced by Smirnova et al. (Zukhbaya and Smirnova 1991;Kovalev and Smirnova 
1996) have been successfully utilized to simulate and interpret the experimental data derived 
from acute and chronic irradiation of rodents (Smirnova 1999; Smirnova and Yonezawa 2003, 
2004). The models consider all four major cell lines (granulopoiesis, lymphopoiesis, 
erythropoiesis, and thrombopoiesis) in a framework of negative feedback control via an implicit 
regulation mechanism. Each cell line consists of either three or four coarse-grained 
compartments and explicit parameters measurable by conventional hematological and 
radiobiological methods (Kovalev and Smirnova 1996). Most models use several equations with 
explicit regulators to simplify the complicated chains of substances and reactions that are 
involved in the hematopoietic regulation (e.g., Fliedner et al. 1996; Wichmann and Loeffler 
1985). It has been observed, however, that for each cell line, a network of hematopoietic 
cytokines exists that regulate cell viability, multiplication, and differentiation (Sachs 1996), and 
there are also nervous system factors characterized by myelinated and unmyelinated nerve fibers 
in bone marrow that control cellular flow. In addition, there are cellular factors such as the 
continuous migration of HSCs through the blood that assure a sufficient number of HSCs in each 
bone marrow subunit (Fliedner et al. 2002). These factors work together to allow the 
heterogeneously distributed bone marrow to act and react as “one organ” in the complicated cell 
renewal processes throughout the entire body. An implicit treatment of such a complex 
mechanism is superior to the explicit treatment, as the regulation events are not just local but 
more similar to how a system operates across all levels of organization. With this advantage and 
the simplified coarse-grained hematopoietic compartmental structure, effects of various radiation 
conditions can be easily incorporated into the cellular kinetic equations, and a dynamic 
relationship between the peripheral blood cells and the bone marrow precursor cells after 
radiation damage can be rigorously established (Kovalev and Smirnova 1996; Hu and Cucinotta 
2011).  

The granulopoietic model proposed by Smirnova et al. (2011) has been extended from 
rodents to large animals and humans (Hu and Cucinotta 2011a). By introducing species-
dependent hematopoietic and radiobiological parameters, the granulopoietic model can generate 
results consistent with the data from experiments on beagle dogs and rhesus monkeys, as well as 
with acute, protracted, and chronic radiation conditions from various sources (Hu and Cucinotta 
2011b). This implies that this model may provide a correct quantitative description of the 
hematopoietic response that covers a broad range of radiation conditions and species and could 
be a potential unified model with which to characterize mammalian hematopoietic responses 
after irradiation. By extending the model to humans, some empirical data on the hematopoietic 
response of victims after radiation accidents can also be reconstructed. In addition, this model 
can calculate the survival portion of bone marrow precursor cells after various types of exposure, 
which is essential for determining the likelihood of reversible or irreversible injury of the 
hematopoietic system (Fliedner et al. 1996). As an application in space radiation risk assessment, 
the model can be used to simulate the possible suppression of granulocytes in an astronaut in 
interplanetary space under chronic stress from low-dose irradiation, as well as the granulopoietic 
response if a historically large SPE is encountered (Hu and Cucinotta 2011b). 
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For long-duration space missions beyond low-Earth orbit, crew members will be exposed 
to a chronic background of high-LET GCR with the possibility of encountering a large but 
infrequent SPE. Figure 5a shows the modeled granulopoietic effects under the chronic dose rate 
of 1.5 mSv/d, which has been predicted for the GCR dose near a solar minimum (Cucinotta et al. 
2006). Though the level of granulocytes in blood is just slightly depressed, according to this 
model, there will be a persistent presence of weakly damaged X1 cells in bone marrow. Figure 5b 
shows the simulated granulocyte modulation for an astronaut in a typical spacecraft traveling in 
interplanetary space if he encounters a SPE 100 days after the launch. The SPE is postulated to 
be the same as the historically worst-case August 2, 1972, event. At the peak of this event, the 
exposure in a lightly shielded spacecraft (5.0 g/cm2) would have been about 443.0 mSv over a 
10-hour increment (Hu et al. 2009), assuming that crew members do not seek shelter in a more 
heavily shielded storm shelter. In this example, the chronic GCR dose rates are assumed to be 
1.0 mSv/d to more closely represent solar maximum conditions, as large SPEs are known to 
occur at different parts of the solar cycle. The granulocyte concentration in blood can be as low 
as 75% of the normal level shortly after the peak of an SPE. At the nadir of the granulocyte 
counts, the level of intact X1 cells in bone marrow is about 35% of the normal level because most 
cells in this pool experience at least weak damage from the high-dose-rate irradiation. Previous 
studies indicate that such an adverse scenario within a short period will not cause hematopoietic 
failure and that the system will recover automatically (Fliedner et al. 1996; Wilson et al. 1997). 
However, the response of the system to additional SPEs would be weakened, a situation that is 
possible during long-duration space missions (Kim et al. 2009a). This scenario is the basis for 
the 1970 National Academy of Sciences (NAS/NRC 1970) recommendation for a 0.50 Sv/y limit 
for the protection of the blood system that is still currently used by NASA.  

 
 

 
 
Figure 5. Granulocyte levels after space radiation exposures (Hu and Cucinotta 2011b). (a) Reduction of 
granulocytes under 1.5 mSv/d of continuous exposure to GCR at solar minimum. The concentrations of 
intact and weakly damaged X1 cells in bone marrow are also shown. (b) Modulation of granulocyte levels 
and intact precursor cells if an astronaut encounters the historically worst SPE. Before and after the SPE, 
the dose rate of GCR is assumed to be 1.0 mSv/d.  
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  A recent investigation indicated that the lymphopoiesis model proposed by Smirnova can 
also qualitatively and quantitatively describe a wide range of accidental data in vastly different 
scenarios if adapted with model parameters for humans (Hu et al. 2012). The results are 
consistent with the two widely recognized empirical biodosimetric tools, Guskova’s method and 
Goans’ method, demonstrating the potential to use the models as an alternative method for the 
assessment of radiation injury. In accidental situations, the exposure may involve poorly 
penetrating beta radiation and very penetrating gamma-ray, X-ray, thermal, and intermediate 
neutron radiation (Guskova et al. 2001). Thus, most individuals involved in accidents received 
non-uniform irradiation rather than uniform whole-body irradiation. Biodosimetric markers, such 
as persistent lymphopenia or the cytogenetic assay, are particularly important for assessing 
whole-body damage, as they reflect the average response required to cope with the injuries at 
various levels of the physiological system (Guskova et al. 2001). They also provide more 
accurate information for medical decision-making than physical detection devices (Dainiak 
2002). The lymphopoiesis model is therefore very useful for interpreting biodosimetric marker 
data following accidental radiation exposures (Hu et al. 2012).  
  Thrombopoietic and erythropoietic models have also been extended to describe human 
hematopoietic responses after acute radiation or during chronic radiation exposures (Smirnova 
2012). In essence, all hematopoietic cell renewal systems have a very similar structure and 
function (Fliedner et al. 2002). The hematopoiesis models proposed by Smirnova et al. (2009) 
describe the mechanism of blood cell production starting from the pluripotent stem cell through 
different development stages, represented by the coarse-grained compartments, and the degree of 
cellular loss quantified by the radiosensitivity parameters of each compartment as well as the 
absorbed doses. The underlying implicit regulation mechanisms reflect the features of a systems-
level response of the hematopoietic system to exogenous perturbations, which is reflective of the 
fact that the bone marrow, though heterogeneously distributed throughout the skeleton, acts as 
one organ of blood cell renewal for the whole body. Such a scheme seems to be applicable to all 
hematopoietic cell lineages and different radiation conditions (Hu et al. 2012; Hu and Cucinotta 
2013); thus, it is possible to develop a unified model to characterize mammalian hematopoietic 
responses after irradiation, which has been pursued by many researchers for several decades 
(Bond et al. 1965; Fliedner et al. 2007). 

 
C. Epidermal Response Models 
 

It is interesting that such a scheme can also be applied to simulate the cellular alterations 
observed in the patches of skin epidermis exposed to high-dose acute irradiation (Smirnova et al. 
2014). In this model, the epidermal keratinocytes are separated into three groups according to the 
degree of their maturity and differentiation:  

• X: the dividing maturing cells of the basal layer (from stem cells to mature basal 
cells); 

• Y: the maturing cells of the joint spinous/granular layer (from spinous cells to 
granular cells, i.e., prickle cells); 

• Z: the cells of the corneal layer (corneal cells or squames). 
The dynamics of the skin epidermal epithelium are represented by a system of ordinary 
differential equations, which resemble those used in the models of major hematopoietic lineages 
discussed above. With cell kinetics parameters experimentally determined in swine epidermis, 
the modeling results for the dose- and time-dependent changes in basal and prickle cell 
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populations are in good agreement with relevant experimental data. In addition, the simulations 
also reveal that a correlation exists between the dynamics of a moist reaction experimentally 
observed and the corresponding in silico dynamics of corneal cells. From this information, the 
threshold level of corneal cells (which indicates the appearance of the moist reaction) can be 
identified (Smirnova et al. 2014). 

A different approach using a multiscale soft tissue framework can also be employed to 
simulate the skin epidermal homeostasis and radiation responses (Hu and Cucinotta 2014). The 
model couples the following fundamental processes: 

• Subcellular level: Wnt signaling, cell-cell adhesion, and cell-cycle control; 
• Cellular level: Cell division, migration, and differentiation; 
• Macroscale level: Extracellular Wnt profile, cell-cell adhesion, and basal cell-BM 

adhesion. 
The connections between cells are modeled as springs, and Voronoi tessellation is used to 
associate the cell centers and to determine the size and shape of every cell in the aggregate. The 
cell-cycle progression, cell-cell adhesion, and differentiation states are influenced by intra-, inter-
, and extracellular cues. By incorporating experimentally measured histological and cell kinetic 
parameters in this well-developed multiscale tissue framework, population kinetics and 
proliferation index results comparable to observations in unirradiated and acutely irradiated 
swine experiments can be obtained (Hu and Cucinotta 2014). Based on the simulation results, it 
can be demonstrated that a moderate increase in the proliferation rate of the surviving 
proliferative cells is sufficient to fully repopulate the area denuded by high doses of radiation, as 
long as the integrity of the underlying basement membrane is maintained. The importance of 
considering proliferation kinetics as well as the spatial organization of tissues during in vivo 
investigations of radiation responses is also highlighted.  

The epidermis of swine is known as the closest to that of humans in terms of structure, 
histology, and cell kinetics. Nevertheless, extrapolation of the developed models to humans 
needs further investigation, as some subtle differences between the epidermis of swine and 
human are known even from early studies (Montagna and Yun 1964).  
 
VI. Risk in Context of Exploration Mission Operational Scenarios 
 
A. Cumulative Probability of a Solar Particle Event Occurrence during a Given Mission 

Period 
 

Estimates of likely SPE cumulative doses and dose rates at critical organs are important 
for assessing the probability of ARS for specific mission scenarios. Detailed spectra and 
temporal information are available for most of the SPEs that have occurred since 1955. An 
analysis of nitrate concentrations in Arctic ice core samples provided data on integral fluences that 
are above 30 MeV for SPEs dating back to the 15th century (McKracken et al. 2001). However, 
recent work by Schrijver et al. (2012) has shown that the statistics of nitrates cannot be used as a 
proxy for the statistics of SPEs. Therefore, ice core data should not be used either for frequency 
analysis or to set upper limits of events. The use of nitrates as a proxy for SPEs should be 
removed from current analysis tools and not used in future work. Other proxies, such as lunar 
and terrestrial radionuclides, may be of use in constraining the upper limit of SPE fluences 
(Schrijver et al. 2012). Recent work by Kovaltsov and Usoskin (2014) revealed that an SPE with 
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energy > 30 MeV and proton fluence > 1011 (protons/cm2 per year) is not expected on mega-year 
timescales based on lunar radionuclide data.  

For recent solar cycles 19 through 21 (1955–1986), a list of major SPEs and associated 
proton fluences has been assembled by Shea and Smart (1990), who placed all of the available 
flux and fluence data in a useful continuous database. From 1986 to the present (solar cycles 22 
and 24), both an SPE list and the Geostationary Operational Environmental Satellite (GOES) 
spacecraft measurements of the 5-minute-average integral proton flux can be obtained through 
direct access to the National Oceanographic and Atmospheric Agency (NOAA) National 
Geophysical Data Center. Work was done by Xapsos et al. (2004) to utilize data from the 
Goddard Medium Energy (GME) instrument on board the Interplanetary Monitory Platform 8 
(IMP-8) satellite along with the GOES series in a consistent manner. The GOES data were 
calibrated to the IMP-8 data and re-binned to the finer energy bins of the GME instrument. This 
provides a consistent dataset from 1973 through 2006. The SPEs identified during solar cycles 
19–23 varied significantly in the overall distribution of Φ30 from cycle to cycle.  However, 
fluence data of Φ30 were combined over all 5 cycles to estimate an overall probability 
distribution of an average cycle.   

While the expected frequency of SPEs is strongly influenced by the phase of the solar 
activity cycle, the SPE occurrences themselves are random in nature. The onset dates of a total of 
370 SPEs during solar cycles 19–23 are marked in the top of Figure 6 as brown vertical lines.  
More frequent SPE occurrences are shown as dense vertical lines, which are located typically 
near the middle of cycles. Large SPEs with proton fluences at energies > 30 MeV, F30 > 1×107 
protons/cm2 are also shown. Other than a general increase in SPE occurrence with increased 
solar activity, recent solar cycles have yielded no recognizable pattern of when and how large 
individual SPEs occur (Goswami et al. 1988; Kim et al. 2005, 2009b, 2011). There have been 
several occurrences of intense SPEs during solar active years, which are typically 2.5 years 
before and 4.5 years after solar maximum. The data in Figure 6 lead to the observation that 
individual SPE size is randomly distributed. This sporadic behavior of SPE occurrence and event 
size is a major operational problem in planning for missions to the moon and Mars. 
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Figure 6. SPE onset date marked as vertical lines in the top of the figure, and large SPEs recorded during 
5 modern solar cycles with integral proton fluences of F30, F60, and F100 > 1×107 protons/cm2 with energies 
> 30, > 60, and > 100 MeV, respectively (Kim et al. 2011). 
 

To address the random nature of SPE occurrences and event sizes, a probabilistic 
approach to modeling has been the method that is often used, starting with the work of King 
(1974). In addition, the NASA JPL proton fluence model (Feynman 2002), the Moscow State 
University probabilistic SPE model (Nymmik 1999), and the Emission of Solar Proton (ESP) 
model (Xapsos 1999, 2000, 2007) have used similar methods to those of King. The ESA SEPEM 
model (Jiggens 2012) uses a virtual timeline methodology. All of these efforts utilize historical 
measurements, as available, and provide a cumulative SPE spectrum at some confidence level. 
This work is useful for mission design, as a range of confidence levels can be considered during 
the design phase. The work of Kim et al. (2009a) incorporates the probabilistic modeling 
framework but builds the probabilities from historical mathematical models of large SPE spectra. 
 
B. Spectral Representation of Solar Particle Events 

 
The shapes of the energy spectra, as well as the total fluence, vary considerably from 

event to event. Accurate organ dose estimates and particle spectra models are needed to ensure 
astronauts stay below radiation limits and to support the goal of narrowing the uncertainties in 
risk projections (Cucinotta et al. 2010). For the radiation dose assessments of astronauts from 
SPEs, spectral forms of incident particles extending to a few GeV have been fitted with available 
measurements up to ~100 MeV. Those functional forms, an exponential in rigidity (Schaefer 
1957;Freier and Webber, 1963;King 1974) and a nonlinear regression of Weibull (Xapsos et al. 
2000;Kim et al. 2009b), are simple and useful representations of the spectrum of SPEs; however, 
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the spectral assumption beyond ~500 MeV may result in the systematic uncertainty in radiation 
dose assessments of astronauts. With currently available assets, the energy spectrum of SPEs is 
only accurate up to approximately 500 MeV. Further constraint of the high-energy tail of the 
spectrum requires additional information not previously available from space assets. PAMELA 
(Adriani et al. 2015) provides direct measurements of the high-energy tail, but the measurements 
are limited due to its location in LEO.  Ground-based neutron monitors, however, can also help 
provide constraints for the high-energy tail of the SPE spectrum. 

A simplified technique for analyzing data from the world-wide neutron monitor (NM) 
network has been developed by Tylka and Dietrich (2009). They derived absolutely-normalized 
event-integrated proton spectra from the ground-level enhanced (GLE) event database. In this 
method, the fluences were extracted for individual NM stations with the quantification of the 
internal consistency of the results. The combined satellite and NM data from ~10 MeV to ~10 
GeV from major SPEs (Tylka and Dietrich 2009) were presented as a double power law in 
rigidity, a so-called Band function (Band et al., 1993): 
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where R in GV, E in MeV, and γ1 and γ2 are the spectral indexes.  

 
Several large SPEs with GLEs recorded by neutron monitors are the events on 23 

February 1956, 12-15 November 1960, 29 September 1989, 4-7 August 1972, and 19-24 October 
1989. Their event-integrated differential spectra have been compared for three different 
functional forms using different spectral representations of large SPEs. Variations of exposure 
levels were compared as an approach to the development of improved radiation protection for 
astronauts, as well as the optimization of mission planning and shielding for future space 
missions.   

  The question of how to handle the extrapolation of SPEs at Earth to Mars and beyond is 
ongoing. Specifically, the radial dependence of SPEs and how to extrapolate particle fluences 
beyond 1 astronomical unit (AU) (1 AU ≈ 1.5x108 km) were investigated by Smart and Shea 
(2003). Smart and Shea found that the radial dependence of the SPE flux had a range from R-2 
(for R< 1 AU) to R-4 (for R > 1 AU), where R is the radial heliospheric distance. Recent 
modeling work (Aran et al. 2005; Kozarev et al. 2010; Verkhoglyadova et al. 2012) and 
observations (Lario et al. 2006) revealed that the power law index values can vary significantly 
from the findings of Smart and Shea (2003). Some variables identified as affecting the variation 
in the power index include the particle energy range studied and coronal mass ejection shock 
obliquity and shock speed (Aran et al. 2005; Kozarev et al. 2010; Verkhoglyadova et al. 2012).     
 
 
C. Temporal Profiles of Solar Particle Events 

 
During a large SPE, there is a sudden increase in proton flux, especially for particles with 

energies greater than 50 MeV. The time profile of an individual SPE can be very complex due to 
the complicated acceleration mechanisms driving the SPE. Some SPEs can exhibit a sharp onset 
of high-energy protons after the major pulse (Reames 1999).  While the fluence during this 
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secondary onset may not be as large as that during the peak, the sudden increase in dose rate is 
an open question with important implications for acute responses to SPEs due to the dose-rate 
dependence (NCRP 2000). 
  Total fluence of an SPE is the representative indicator of a large SPE. The detailed energy 
spectra for a large SPE, especially at high energies, is the most important parameter for assessing 
the risk of radiation exposure (Kim et al. 2006; Schwadron et al. 2010), and dose rate-dependent 
factors are important for assessing biological acute responses (NCRP 2000).  A detailed temporal 
analysis of dose rate at the BFO for each SPE shows the highest dose rate at its peak, at which 
point significant biological damage would occur in a crew if adequate shielding is not provided 
(Hu et al. 2009). Early biological effects are expected to increase significantly for dose rates 
above 0.05 Gy/h. For an extended EVA, the current recommended 30-day exposure limit for the 
BFOs, which is 0.25 Gy-Eq (NCRP 2000), is easily exceeded without sufficient shelter. 
   A simplified model of SPE temporal variation that includes an exponential rise to a peak 
intensity followed by a slow decay to background levels is often used as input to obtain dose and 
dose rate information of interest for modeling acute radiation risk (ARR). According to the 
temporal evolution of Φ30 with the assumption of the same spectral shape of each SPE at each 
time step, the dose rate distribution is estimated from the total SPE exposure. The early radiation 
risks are assessed from the BFO dose and dose rate by using the probabilistic biomathematical 
models of ARR (Anno et al. 1996; Hu et al. 2009;Hu and Cucinotta 2011;Hu et al. 2012), which 
include lymphocyte depression, granulocyte modulation, fatigue and weakness syndrome, and 
upper gastrointestinal distress. The temporal profiles of severities of the relevant symptoms are 
simulated, and the incidence rate of individuals is estimated at the 95% confidence interval.  

 
D. Shielding Material and Shielding Distribution of Spacecraft 

 
The early effects from acute exposure may not be avoided when only a conventional 

amount of spacecraft material is provided to protect the BFO from a large SPE. To avoid placing 
unrealistic mass on a space vehicle while at the same time increasing safety levels for the 
astronauts, one solution for shielding against SPEs is to select optimal materials for the vehicle 
structure and shielding. To this end, it has been shown that materials that have lower atomic 
mass constituents have better shielding effectiveness (Wilson et al. 1999; Cucinotta 1999). 
Overall exposure levels from large SPEs that have been recorded in the modern era can be 
reduced to below 0.1 Sv when heavily shielded “storm shelters” are added to a typical spacecraft 
(Kim et al. 2006). Interpretation of this result, however, should be made while keeping in mind 
the caveat that significant uncertainties are inherent in determining the source spectra of protons 
(Musgrave et al. 2009). 
  In the development of an integrated strategy to provide astronauts maximal radiation 
protection with consideration of the mass constraints of space missions, the detailed variation of 
radiation shielding properties (Kim et al. 2010;Walker et al. 2013) is considered to improve 
exposure risk estimations. For shielding analysis at a specific location in the spacecraft, shielding 
distributions can be evaluated. Currently, ARS due to SPEs can be assessed using the ARRBOD 
(Kim et al. 2010) and OLTARIS (Singleterry et al. 2010) models, which incorporate the 
shielding distributions of various spacecraft, including the conceptual lunar/Mars/NEA transfer 
capsule, lunar habitat, command module of Apollo, various locations within MIR (Badhwar et al. 
2002), locations of the six passive radiation dosimeters of Shuttle (Atwell et al. 1987), and the 
six radiation area monitors of the International Space Station (Wilson et al. 2006).  OLTARIS 
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allows users to upload their own thickness distributions utilizing user-defined material properties 
for assessment and optimization.  
  In addition, optimization of storm shelters has been considered. Walker et al. (2013) and 
Simon et al. (2013) recently analyzed a trade space of different shield design concepts, including 
storm shelter placement within the vehicle, for multiple historic SPE spectra. The metric for 
shielding effectiveness in these studies was the reduction in effective radiation dose relative to 
the dose derived from nominal shielding conditions. 

 
E. Solar Alert and Monitoring 

 
An effective operational procedure requires an SPE warning or alert system. This system, 

which would be activated at the onset of proton exposure, would include pertinent information 
concerning the event, such as the fluence or flux and the energy distribution. These capabilities 
do not currently exist, and forecasts from NOAA are limited. New capabilities for deep space 
mission forecasting will be needed prior to a Mars mission because the alignment of the Earth 
and Mars does not allow all SPEs on Mars to be observed from Earth. A  report by the NRC 
discussed research approaches in space science that should lead to improved forecasting and alert 
capabilities for SPEs (NAS/NRC 2006), including a status of approaches supported by the NASA 
Science Mission Directorate. 

The most likely outcome of an SPE is mission disruption, with little or no harm to the 
crew, because despite the occurrence of some very large SPEs (e.g., the 1972 event described 
previously), more than 90% of SPEs result in very small radiation doses to critical organs (<100 
mGy-Eq) (Kim et al. 2011). The other 10% of events can yield biologically significant doses and 
dose rates and are a concern for astronaut health and, therefore, mission planning. 

Still, mission disruption is possible because the size of the SPE cannot be determined 
until several hours after its initial onset. Reliable radiation dosimeters that can transmit 
information to mission control and provide a self-alert to astronauts are required. Such 
instrumentation has been available for many years, including during the Apollo missions (NCRP 
1989a). In 2009, a workshop was held to determine operational requirements for forecasting as 
well as the state of forecasting capability (Fry et al. 2010). The workshop concluded that models 
were sufficiently mature to begin assessing them against operational requirements and that there 
would be benefit from future research. Since the workshop, further research has been performed 
to improve dose forecasting using regression techniques (Moussa and Townsend 2014). 
Additionally, a statistical method to evaluate forecasting performance using five different metrics 
was developed and applied to four different forecasting models (Falconer et al. 2014).  
  
F. Acute Radiation Risk and BRYNTRN (Baryon Transport) Organ Dose Projection 

(ARRBOD)  
 
  The Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code has 
been developed as a NASA tool to evaluate acute risks and organ doses from SPE exposures. 
ARRBOD (Kim et al. 2010), which includes the baryon transport code of BRYNTRN (Cucinotta 
et al. 1994;Wilson et al. 1989) and an output data processing code of SUMDOSE, is used to 
estimate the whole-body effective dose for astronauts. The radiation shielding by body tissue at 
specific organ sites is accounted for by using ray tracing in the human phantom models of the 
Computerized Anatomical Male (CAM) model (Kase et al. 1970; Billings and Yucker 1973) and 
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the Computerized Anatomical Female (CAF) model (Yucker and Hudston 1990; Yucker 1992). 
By implementing the NCRP’s recommended RBE (NCRP 2000) and the full definition of 
neutron RBE suggested by Wilson et al. (2002), the dosimetric quantities of various organs in 
gray-equivalents (Gy-Eq) are calculated for male and female astronauts in case they encounter 
historically intense SPEs during transition and on the surface during lunar or Mars missions. The 
resultant organ doses for skin, eye, and BFO are compared with the current 30-day PELs (Table 
1). The severity of possible ARS is assessed from the BFO dose by using the NASA-developed 
probabilistic model ARRBOD (Anno et al. 1996; Hu et al. 2009).  
  For SPE environments, ARRBOD uses the exponential spectrum and Weibull 
distribution function. These two functional forms can fit available satellite measurements up to 
~100 MeV. The recent analysis of the SPE spectrum of the Band function is included, which fits 
the combined satellite and neutron monitor data to improve the spectral fits from ~10 MeV to 
~10 GeV (Tylka and Dietrich 2009). In addition, as the overall probability distribution of SPE 
fluence for an average cycle is estimated from the proton fluence data with energy greater than 
30 MeV (F30) for cycles 19-23 (Kim et al. 2009a), a probability level of proton fluence can be 
specified by the user to analyze the exposure from SPEs. This is because the overall distribution 
of F30 is statistically significantly different from cycle to cycle in the recorded SPE data. To 
simulate the protracted effects of radiation exposure from SPEs, a simple representative temporal 
profile of SPE is modeled for the particle flux evolution by using a pulse function, which is 
parameterized by two time constants (the rise and decay times) and the ratio of proton flux for 
energies greater than 30 MeV at the peak to the onset. 

With the temporal profile of the SPE described, both the temporal profile of the BFO 
dose rate within the spacecraft and the temporal profile of the EVA BFO dose rate can be 
generated for male and female astronauts. Once IVA and EVA timelines are established, the 
acute health response information of lymphocyte depression, granulocyte modulation, fatigue 
and weakness syndrome, and upper gastrointestinal distress is generated by NASA-developed 
prodromal risk models and hematopoietic models (Hu et al. 2009;Hu and Cucinotta 2011a, 
2011b;Hu et al. 2012). 
 
G. Potential for Biological Countermeasures 
 

Radiation countermeasures can include radioprotectors, mitigators, and treatments.  
Radioprotectors, such as antioxidants, are agents that are given prior to exposure to reduce the 
damage to various organs by radiation (Gudkow and Komarova 2005), while mitigators are 
agents given during or shortly after exposure (Stone et al. 2004; Bourgier et al. 2012). Biological 
countermeasures under development for use in clinical practice and against radiological threats 
are expected to provide risk reduction for low-LET radiation delivered at high doses and dose 
rates. However, their effectiveness at low dose rates and for high-LET solar particle radiation is 
less clear and may be distinct from the countermeasures required for the other space radiation 
risks of cancer, central nervous system, and degenerative tissue effects. The likelihood that an 
SPE will produce doses that are above 1 Gy is small, but the occurrence of doses that can induce 
prodromal risks is possible. Although the prodromal syndrome, including nausea, vomiting, 
anorexia, and diarrhea, may seem more innocuous than the other symptoms of ARS, biological 
countermeasures for the prodromal risks are a major consideration. Ondansetron (Zofran®), a 5-
HT3 serotonin antagonist, is a biological countermeasure that has been tested in animal models 
under space-relevant doses and dose rates (King et al. 1999) and is approved clinically for the 
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treatment of nausea associated with radiotherapy. Ondansetron has demonstrated effectiveness in 
reducing emetic risk due to space-relevant ionizing radiation and is currently used on the ISS for 
nausea and vomiting (Kennedy 2014).  Oral anti-diarrheal agents are included in the ISS medical 
kit to ameliorate symptoms associated with diarrhea.  While the risk of infection is another factor 
that requires attention, current medical kits include a range of antibiotics, namely, penicillins, 
cephalosporins, and macrolides (Marshburn 2008), that will be available to support a weakened 
immune system. These treatments have been successfully delivered orally or via intramuscular 
injection on previous space missions.   

Following the prodromal phase, there is concern for the occurrence of hematopoietic 
syndrome at the anticipated exposure doses given the potential for the bone marrow to be 
compromised at doses as low as 0.5 Gy (Mettler 2012). There are several mechanisms being 
targeted for the development of radiation countermeasures to address hematopoietic syndrome, 
including the scavenging of free radicals, blocking cell death signals, facilitating repair of 
damaged molecules, and inducing regeneration of injured tissue (Whitnall 2012).  A summary of 
several radioprotectors and mitigators that have been explored to treat hematopoietic syndrome 
and their various stages of development are outlined in Table 6. One of the more successful 
radiation mitigators, filgrastim (Neupogen®, Amgen), is a granulocyte colony stimulating factor 
that has shown promise in several studies when administered post-exposure and is currently part 
of the US National Strategic Stockpile (Xiao and Whitnall 2009; Farese et al. 2013). Neupogen® 
received FDA approval in 2015 for the additional indication to “increase survival in patients 
acutely exposed to myelosuppressive doses of radiation” (FDA 2015). The recommended dosage 
for patients acutely exposed to myelosuppressive doses of radiation is 10 mcg/kg/day by 
subcutaneous injection (Amgen 2015).  The sustained release version, pegfilgastrim (Neulasta®), 
reduced neutropenia in studies involving SPE-like protons (Romero-Weaver et al. 2013) and has 
recently received FDA approval (FDA 2015) for the same indication as Neupogen® with a 
recommended dosage of 0.1mg/kg subcutaneously once per week for two weeks.  An automated 
subcutaneous delivery system was recently released by Amgen to facilitate delivery of 
Neupogen® and Neulasta®.  Antioxidants have also been investigated both in vitro and in vivo 
for their protective properties against radiation-induced oxidative stress, with several 
demonstrating promising results in SPE-relevant studies (Kennedy and Wan 2011;Kennedy 
2014), and beta androstendediol administered post-irradiation had beneficial effects following 
heavy ion particle irradiation (Loria et al. 2011).  

The anticipated SPE exposure dose to the skin ranges from 0.5-5 Gy. At the higher doses, 
there is an increased likelihood of radiation dermatitis, which can result in irritation, pain, and 
skin infections that may ultimately compromise the immune system (Peebles et al. 2012; Ryan 
2012). In studies involving minipigs exposed to 5 or 10 Gy of SPE-like protons, topical steroid 
cream (Elocon®) mitigated radiation-induced skin damage (Kennedy 2014). Radiation exposure 
to skin is currently treated as a burn. Medical kits provided on the ISS include silver sulfadiazine, 
sterile gauze, parenteral opioid analgesics, and crystalloid solutions (Marshburn 2008), although 
more advanced radioprotectors and mitigators may be required for longer duration missions. 
These may include targeted gene therapy with targets focused on the TGFβ1 pathway inhibitor, 
synthetic superoxide dismutase/catalase mimetics, recombinant IL-12, toll-like receptor-5 
antagonist, and inhibitors of cyclin-dependent kinases (Ryan 2012).   

There are several biological radiation countermeasures currently available or under 
development that can be investigated to determine their efficacy in treating ARS due to SPEs. 
Several new therapies are also being explored, many of which are already in early-stage clinical 
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trials, to evaluate their toxicity and safety as space radiation countermeasures. Mechanistic 
studies of possible biochemical routes for countermeasure actions must be combined with 
approaches to extrapolate model system results to humans for such countermeasures to be used 
operationally by NASA. It will be important moving forward to bear in mind that the efficacy of 
any biological countermeasure will need to be determined under the appropriate dose and space 
radiation environment, and the impact on other risk areas must be considered. Selecting effective 
radioprotectors or mitigators will also involve practical concerns, such as ease of administration, 
effectiveness period, impact on performance, side effects, toxicity, shelf-life, and drug 
interactions, all of which will be factored into the adoption of any biological countermeasure. 
Continued surveillance of new technologies and radioprotectors/mitigators will guide the 
identification and validation of appropriate biological countermeasures for long-duration space 
missions. 
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Table 6. Summary of Biological Countermeasures Investigated for Radioprotection or Mitigation 
Radiation	Countermeasures	for	Hematopoietic	Syndrome	

Countermeasure	 Class	 Group	 Mechanism	 Testing	 Status	 References	

Neupogen	 Radiomitigator	 Recombinant	growth	
factor	

Granulocyte	Colony	Stimulating	
Factor	(G-CSF)		

Rhesus	macaques		exposed	to	7.5	Gy	
TBI	gamma;	delivery	1	and	8	days	
post-IR;	increased		survival	and	
neutrophil-related	parameters	

FDA	approval	
under	Animal	
Rule	

Xiao	2009,	Farese	
2013,	2014	

Neulasta	(pegylated	
form	of	Neupgen)	

Radiomitigator	 Pegylated	growth	factor	 Granulocyte	Colony	Stimulating	
Factor	(G-CSF)		

Rhesus	macaques		exposed	to	7.5	Gy	
TBI	gamma;	delivery	1	and	8	days	
post-IR;	increased		survival	and	
neutrophil-related	parameters	

NHP	studies	
conducted	for	
FDA	approval	
under	Animal	
Rule	

Hankey	2015	

Sargramostim	(Leukine)	 Radiomitigator	 Recombinant	growth	
factor	

Granulocyte	Colony	Stimulating	
Factor	(G-CSF)		

Rhesus	macaques	exposed	to	7	Gy	TBI	
60Co;	delivery	1x/day	for	23	days	post-
IR;	Recovery	from	severe	neutropenia	

FDA	approval	for	
off-label	use;	
included	in	SNS	

Gupta	2013	–	FDA	
briefing	package	

Amifostine	(Ethyol)	or	
WR-1065,	WR-2721,	
WR-151,327	

	

Radioprotector	 Aminothiol	 Antioxidant;	free	radical	scavenger;	
DNA	protector	

B6CF1	exposed	to	2	or	4	Gy	TBI	Co-60;		
B6CF1	exposed	to	0.1	or	0.4	Gy	TBI	
fission	neutrons;	delivery	30	min	pre-
IR;	increased	survival;	protected	
against	specific	tumors;	protected	
against	non-tumor	complications;	
induces	adaptive	response	

FDA	approval	for	
renal	toxicity	and	
xerostemia	in	
patients	being	
treated	for	
cancer	

Peebles	2012,	Soref	
2011,	Langell	2008,	
Xiao	2009,	Paunesku	
2008,	Grdina	2013,	
Bogo	1985	

PrC-210	 Radioprotector	 aminothiol	 Antioxidant;	free	radical	scavenger;	
DNA	protector	

ICR	mice	exposed	to	8.63-8.75	Gy	TBI	
137Cs;	delivery	30	min	pre-IR;	
increased	survival	

Testing	ongoing	
at	AFRRI	

Copp	2013	

B-190	(Indralin)	 Radioprotector	 alpha1-adrenergic	
receptor	

Vasoconstrictor;	neutralizes	the	
oxygen	effect	

Rhesus	macaques	exposed	to	6.8	Gy	
TBI	60Co;	delivery	5	min	pre-IR;	
antimicrobials	post-IR:	levomycetin	
1x/day	for	days	1-10	and	pen/strep	
combination	1x/day	for	days	10-20;	
increased	survival	

Testing	ongoing	
in	Russia	

Vasin	2014	
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Androstenediol	(5-AED)	 Radioprotector	
and	mitigator	

Steroid	 Nuclear	Factor-κβ;	increases	G-CSF	
and	IL-6	

Rhesus	macaques	exposed	to	4	Gy	
60Co	TBI;	delivery	3-4	hr	post-IR;	
hematopoietic	recovery	

FDA	IND	
approval	

Grace	2012,	Stickney	
2006,	Whitnall	2005	

ON01210	(Ex-
RAD/Recilisib)	

	

Radioprotector	
and	mitigator	

Chlorobenzylsulfone	
derivative	

Tyrosine	kinase	inhibitor;	
attenuation	of	ATM/p53	signaling;	
upregulation	of	PI3K	signaling	

C3H/HeN	mice	exposed	to	6	Gy	TBI	
60Co;	delivery	24	hr	and	15	min	pre-IR;	
mitigated	neutropenia	and	bone	
marrow	suppression;	increased	
survival	

FDA	IND	
approval	

Ghosh	2012,	Singh	
2015,	Kang	2013	

rhIL12	(HemaMax)	 Radiomitigator	 Recombinant	cytokines	 Cytokine;	inflammatory	regulator;	
stimulates	IFN-ɣ	production,	
macrophages	and	T-cells	

Rhesus	macaques		exposed	to	7	Gy	
TBI	Co-60;	delivery	1	day	post-IR;	
increased		survival		

FDA	IND	
approval	

Basile	2012,	
Gluzman-Poltorak	
2014	

CBLB502	(Entolimid)	 Radioprotector	
and	mitigator	

Flagellin	derived	protein	 Toll-like	receptor	5	agonist;	
stimulates	NF-κB	signaling;	
stimulates	G-CSF;	free	radical	
scavenger	

Rhesus	macaques		exposed	to	6.5	Gy	
TBI	Co-60;	delivery	45	min	pre-IR;	
increased		survival	

FDA	IND	
approval	and	
orphan	drug	
status	

Burdelya	2008,	Singh	
2015,	Rosen	2015	

PLacental	eXpanded	
(PLX-R18)	

Radiomitigator	 Placental	stromal	cells	
with	fetal	offspring	cells	

Immunomodulator;	secretes	
cytokines,	chemokines	and	growth	
factors	

C3H/HeN	mice	exposed	to	7.7	Gy	TBI		
6–18	MeV	LINAC;	delivery	24	hr	and	5	
days	post-IR;	increased	bone	marrow	
hematopoietic	cell	proliferation	

Research	
ongoing;	plans	to	
pursue	FDA	
animal	rule	
approval	

Gaberman	2013	

CLT-008	 Bridging	therapy	 Myeloid	progenitor	cells	 Stimulates	myeloid,	erythroid	and	
dendritic	cell	development;	
provides	hematopoietic	support	

CD2F1	mice	exposed	to	9	Gy	TBI	60Co;	
delivery	2hr	or	2	day	or	4	days	or	7	
days	post-IR;	increased	survival	

In	clinical	trials	
for	patients	with	
hematological	
malignancies	

Singh	2012,	2015	

BIO	300	(Genestein)	 Radioprotector		 Soy	isoflavone,	
phytoestrogen	

Antioxidant;	free	radical	scavenger;	
protein	tyrosine	kinase	inhibitor;	
cell	cycle	modulator	

CD2F1	mice	exposed	to	9.25	Gy	TBI	
60Co;	delivery	24	hr	pre-IR;	increased	
survival;	improved	hematopoietic	
recovery	

FDA	IND	
approval	

Ha	2013	

CDX-301	 Radioprotector	
and	mitigator	

Recombinant	human	
protein	form	of	the	
Fms-related	tyrosine	
kinase	3	ligand	(FLT3L),	
a	hematopoietic	
cytokine	

stimulates	expansion	and	
differentiation	of	hematopoietic	
progenitor	and	stem	cells	

C57BL/6	mice	exposed	to	7.76	TBI	
with	137Cs	source;	delivery	24	hr	pre-
IR	and	4	or	24	hr	post-IR;	increased	
survival	

NHP	studies	
underway	at	
AFRRI		

Thomas	2013	
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ALXN4100TPO	 Radioprotector	
and	mitigator	

Thrombopoietin	(TPO)	
receptor	agonist	

Activates	thrombopoietin	
receptor;	stimulates	platelet	
production	

CD2F1	mice	exposed	to	9	Gy	TBI	60	Co;	
delivered	24hr	pre-IR	or	6	hr	post-IR;	
abrogated	thrombocytopenia	and	
bone	marrow	atrophy			

Research	
ongoing	

Cary	2012,	
Satyamitra	2011	

WR-638	(Cystaphos)	 Radioprotector	 Aminoethylphosphor-
othioate	

Antioxidant;	free	radical	scavenger;	
DNA	protector	

Mice	exposed	to	7.5Gy	TBI	60Co;	
delivered	30	min	pre-IR;	
antimutagenic		

Carried	in	field	
pack	by	Russian	
army	

Hall,	Method	for	
protection	against	
genotoxic	
mutagenesis		

Captopril	and	
angiotensin	converting	
enzyme	(ACE)	inhibitors	

Radiomitigator	 Anti-hypertensive	drug	 Thiol	mediated	free	radical	
scavenger	

C57BL/6	mice	exposed	to	6	or	7.5	Gy	
TBI	60Co;	delivery	pre-IR	and	varying	
regimen	post-IR;	delivery	pre-IR	
conferred	no	protection;	post-IR	
treatment	increased	survival	and	
abrogated	thrombocytopenia	

Research	
ongoing	

Davis	2010	

3,3’-Diindolylmethane	
(DIM)	

Radioprotector	
and	mitigator	

Small	molecule	
compound	from	the	
hydrolyzation	of	indole-
3-carbinol	(I3C)		

Stimulates	ATM	signaling;	DNA	
protector	

Sprague–Dawley	(SD)	rats	and	
C57BL/6	mice	exposed	to	13	Gy	TBI	
60Co;	delivery	post-IR	10min	followed	
by	1x/day	for	14	days;	increased	
survival	

In	clinical	trials	
for	other	
indications		

Fan	2013	

Oltipraz	 Radioprotector	 Synthetic	ditholethione	
derived	from	broccoli	

Increased	expression	of	
microsomal	epoxide	hydrolase	and	
glutathione	S-transfer	genes	

Mice	exposed	to	8	Gy	TBI	gamma;	
delivery	pre-IR;	increased	survival	

In	clinical	trials	
for	liver	fat	
reduction	and	
lung	cancer	
prevention	

Singh	2014	

LY294002	or	PX-867	

	

Radiomitigator	 Morpholine	containing	
chemical	compound	

Phosphoinisitide-3	kinase	(PI3K)	
inhibitor	

C57BL/6NTac	exposed	to	9.25	Gy	TBI	
with	137Cs;	delivery	10	min,	4	h,	24	h,	
or	48	h	post-IR;	extends	survival;	
abrogated	cell	death	

In	clinical	trial	for	
neuroblastoma	

Zellefrow	2012,	Lazo	
2013	

Minocycline	 Radioprotector	
and	mitigator	

2nd	generation	
tetracycline	derivative	

Antibiotic;	antioxidant;	free	radical	
scavenger		

C57BL/6	mice	exposed	to	1-3Gy	TBI	
60Co;	delivery	10min	pre-IR	then	10	
min	post-IR	and	1x/day	for	3	days	
post-IR;		Modulates	production	of	
cytokines			

In	clinical	trials	
for	
neuroprotection	
during	
radiotherapy	

Mehrotra	2012,	Kim	
2009,	Tikka	2001	

FGF-peptide	 Radiomitigator	 Synthetic	binding	
domain	peptide	of	FGF-
2	with	peptidase	
resistant	dimer	form	

Maintains	stem	cell	pool;	promotes	
differentiated	cells	

NIH	Swiss	mice	exposed	to	6	Gy	TBI	
with	137Cs;	delivery	48hr	post-IR	
1x/day	for	5	days	then	1x/day	every	
other	day	for	10	days;	increased	the	
number	of	pro-B	and	pre-B	cells	

Research	
ongoing	

Casey-Sawicki	2014	



 

40 

Fluoroquinolones	 Radioprotector	
and	mitigator	

Broad-spectrum	
antibiotics	that	act	
against	gram-positive	
and	gram-negative	
bacteria	

Antibiotic;	antioxidant;	free	radical	
scavenger		

C3Hf/Kam	mice	exposed	to	8Gy	TBI	
with	137Cs;	delivery	24	hr	or	1	hr	pre-
IR	or	24	hr	post-IR	then	5x/day;	
increased	survival;	enhanced	
hematopoiesis	

In	clinical	trials	
for	antimicrobial	
indications	

Kim	2009,	Shalit	1997	

Octadecenyl	
Thiophosphate	(OTP)	

Radioprotector	
and	mitigator	

Small	Molecule	Mimic	
of	Lysophosphatidic	
Acid	

Receptor-mediated	direct	action;	
regulation	of	hematopoietic	
cytokine	production	

C57BL/6	mice	exposed	to	6.3	Gy	TBI	
137Cs;	delivery	12	hr	pre-IR	or	24,	48	
and/or	72	hr	post-IR;	increased	
survival;	enhanced	hematopoiesis		

Research	
ongoing	

Deng	2015	

Dietary	Supplements:		

Countermeasure	 Class	 Group	 Mechanism	 Testing	 Status	 References	

Ascorbic	Acid	(Vitamin	
C)	

Radioprotector	
and	mitigator	

Dietary	supplement	 Antioxidant;	free	radical	scavenger	 C57BL/6	mice	exposed	to	7	to	8	Gy	
TBI	X-ray;	delivery	immediately	pre-IR	
or	post	IR	or	1,	6,	12,	24,	36	or	48	hr	
post-IR;	increased	survival	

Regulated	by	
FDA	as	a	dietary	
supplement	

Sato	2015	

ɣ-	Tocotrienol	(GT3)	

	

Radioprotectant	 Small	molecule;	vitamin	
E	isomer	

DNA	protector;	antioxidant;	
stimulates	G-CSF	

CD2F1	mice	exposed	to	9.2	Gy	TBI	
60Co;	delivery	24	hr	pre-IR;	reduced	
DNA	damage;	reduced	nitrosative	
stress;	induced	G-CSF	

NHP	studies	
underway	at	
AFRRI	

Kulkarni	2013,	Singh	
2014	

δ	–	Tocotrienol	(DT3)	 Radioprotectant	 Small	molecule;	vitamin	
E	isomer	

DNA	protector;	antioxidant;	
immunomodulator	

CD2F1	mice	exposed	to	7–12.5	Gy	TBI	
60Co;	delivery	24	hr	pre-IR;	anti-
apoptosis;	induces	cytokines	
increased	survival	

Research	
ongoing	

Li	2015,	Singh	2014	

Mentha	Piperita	(Linn.)	-	
peppermint	

Radioprotector		 Herb	 antioxidant	 Swiss	albino	mice	exposed	to	TBI	of	
4,6,8	or	10Gy	60Co;	delivery	3	days	
pre-IR;	inhibited	radiation	induced	
GSH	depletion;	decreased	LPO;	
increased	phosphatase	

Herb;	not	
regulated	by	FDA	

Samarth	2003	

Dragon’s	Blood	and	
extracts	

Radioprotector	 Resin	from	the	fruit	of	
Daemonorops	draco	
tree	

anti-inflammatory;	anti-apoptotic	 BALB/c	mice	exposed	to	4Gy	TBI	60Co;	
delivery	1x/day	for	5	days	pre-IR	and	
1x/day	for	1,	3,	7	or	28	days	post-IR;	
mitigated	oxidative	stress	in	the	liver	
and	spleen;	enhance	immunity;	
hemostasis	

Herb;	not	
regulated	by	FDA	

Ran	2014,	Xin	2012	
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α-Lipoic	acid		 Radioprotector	 Organosulfur	
compound	

lipophilic	antioxidant	 CD2F1	mice	exposed	to	TBI	of	9Gy	
60Co;	delivery	30	min	pre-IR;	
increased	survival;	dihydrolipoic	acid	
had	no	radioprotective	effect	

Regulated	by	
FDA	as	a	dietary	
supplement	

Ramakrishnan	1992	

Radiation	Countermeasures	for	Gastrointestinal	Syndrome	

Countermeasure	 Class	 														Group	 Mechanism	 Testing	 Status	 References	

ON01210	(Ex-
RAD/Recilisib)	

	

Radioprotector	
and	mitigator	

Chlorobenzylsulfone	
derivative	

Tyrosine	kinase	inhibitor;	
attenuation	of	ATM/p53	signaling;	
upregulation	of	PI3K	signaling	

C3H/HeN	mice	exposed	to	13	and	14	
Gy	TBI	60Co;	delivery	24	hr	and	15	min	
pre-IR;	preserved	intestinal	crypt	cells	

FDA	IND	
approval	

Ghosh	2012,	Singh	
2015,	Kang	2013	

	 	 	 	 	 	 	

Cerium	oxide	
nanoparticles	

Radioprotector	 Oxide	of	the	rare	earth	
metal	Cerium	

Free	radical	scavenger;	superoxide	
dismutase	2	regulator	

Athymic	nude	mice	exposed	to	20Gy;	
delivery	4x	pre-IR;	protected	GI	
epithelium	by	ROS	scavenging	and	
increasing	production	of	SOD2	

Research	
ongoing	

Colon	2009,	2010,	
Baker	2013	

TP508	(Chrysalin)	 Radiomitigator	 Rousalatide	acetate	
regenerative	peptide	

stimulates	expression	of	adherens	
junction	protein	E-cadherin;	
activates	crypt	cell	proliferation;	
decreases	apoptosis	

Animals	exposed	to	9Gy	TBI	gamma	
radiation;	delivery	24	post-IR;	
reduced	GI	toxicity;	increased	survival	

Pursuing	FDA	
approval	under	
Animal	Rule	
Guidance	

Kantara	2015	

Pectin	 Radioprotector	 Dietary	supplement;	
highly-complex	
branched	
polysaccharide	fiber;	
rich	in	galactoside	
residues;	present	in	all	
plant	cell	walls	

Inhibition	of	Notch	signaling;	anti-
inflammatory	

C57BL/6	mice	exposed	to	14	Gy	TBI		
137Cs;	delivery	1	week	pre-IR	and	
continued	post-IR;	prevents	IR-
induced	deletion	of	potential	reserve	
ISCs;	facilitated	crypt	regeneration;	
increased	survival	

In	clinical	trials	
for	intestinal	
support	

Sureban	2015	

OrbeShield/BDP	

	

Radiomitigator	 oral	beclomethasone	
17,21-dipropionate;	
corticosterioid	

Induction	of	the	Wnt-b-catenin	
pathway;	Anti-inflammatory;	
vasoconstrictor	

Canines	exposed	to	12Gy	TBI;	delivery	
2	hr	or	24	hr	post-IR;	increased	
survival;	reduce	epithelium	damage	

FDA	IND	for	GI	
ARS;	FDA	Orphan	
Drug	Designation	
for	ARS	

Soligenix	

Anti-ceramide	antibody	
(2A2)	

Radioprotector	 Inflammatory	molecule	 Transmits	apoptotic	signals;	
support	recovery	of	crypt	stem	cell	
clonogens	

C57BL/6	mice	exposed	to	15Gy	TBI	
137Cs;	delivery	15	min	pre-IR;	inhibits	
radiation-induced	endothelial	
apoptosis	and	crypt	lethality;	
increased	survival	

Research	
ongoing	

Rotolo	2012	
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R-spondin1	(Rspo1)	 Radioprotector	 Protein	 Increase	stem	cell	population;	
inhibit	radiation	induced	apoptosis	
in	crypt;	stimulation	of	Wnt-b-
catenin	signaling	in	RIGS	

C57Bl/6	mice	exposed	to	10.4Gy	TBI	
137Cs;	delivery	of	recombinant	
adenovirus	expressing	human	R-
spondin1	using	adenoviral	gene	
transfer	1-3	days	pre-IR;	promoted	
intestinal	stem	cell	regeneration;	
increased	survival	

Research	
ongoing	

Bhanja	2009	

ON01210	(Ex-RAD)	

	

Radioprotector	
and	mitigator	

Chlorobenzylsulfone	
derivative	

Tyrosine	kinase	inhibitor;	
attenuation	of	ATM/p53	signaling;	
upregulation	of	PI3K	signaling	

C3H/HeN	mice	exposed	to	13	and	14	
Gy	TBI	60Co;	delivery	24	hr	and	15	min	
pre-IR;	protected	mucosal	structure	
and	crypt	cells	

FDA	IND	
approval	

Ghosh	2012,	Singh	
2015	

δ	–	Tocotrienol	(DT3)	 Radioprotector	 Small	molecule;	vitamin	
E	isomer	

DNA	protector;	antioxidant;	
immunomodulator	

CD2F1	mice	exposed	to	10-12	Gy	TBI	
60Co;	delivery	24	hr	pre-IR;	protected	
intestinal	tissue;		decreased	
apoptosis;	inhibited	gut	bacterial	
translocation	

In	clinical	trials	
for	support	in	
radiation	therapy	

Li	2013	

N-Acetyl	Cysteine	(NAC)	 Radioprotector	
and	mitigator	

Amino	acid	 Antioxidant	 C57BL/6	mice	abdomen	exposed	to	
20	Gy	X-ray	Delivery	4hr	pre-IR	or	2hr	
post-IR	and	1x/day	for	6	days	post-
IR;increased	survival	

FDA	approved	to	
treat	overdose	of	
acetominophen	

Jia	2010	

α	–	tocopherol	
succinate	(TS)	

Radioprotector	 Small	molecule;	vitamin	
E	isomer	

DNA	protector;	antioxidant;	
immunomodulator	

CD2F1	mice	exposed	to	11	Gy	TBI	
60Co;	delivery	24	hr	pre-IR;	protected	
intestinal	tissue;		improved	structural	
integrity,	inhibited	apoptosis;	
enhanced	cell	

In	clinical	trials	
for	support	in	
radiation	therapy	

Singh	2013	

SOM230	(Pasireotide)	 Radioprotector	
and	mitigator	

Somatostatin	analog	 Preserves	intestinal	barrier	
function	by	decreased	secretion	of	
pancreatic	enzymes	

CD2F1	mice	exposed	to	8.5-11Gy	TBI	
137Cs;	delivery	24-72hr	post-IR	twice	
daily	for	14	days;	suppression	of	
secretion	of	pancreatic	enzymes;	
increased	survival	

Research	
ongoing	with	
BARDA	funding	
at	UAMS	

Fu	2011,	Singh	2015	

Octadecenyl	
Thiophosphate	(OTP)	

Radioprotector	
and	mitigator	

Small	Molecule	Mimic	
of	Lysophosphatidic	
Acid	

Anti-apoptotic	agent	 C57BL/6	mice	exposed	to	10.6	Gy	TBI	
137Cs;	delivery	2	hr	pre-IR	or	24hr	
post-IR;	increased	survival;restored	
glucose	absorption	and	inhibited	
endotoxemia;	significantly	increased	
the	number	of	regenerating	crypts	in	
the	jejunum	

Research	
ongoing	

Deng	2015	
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Palifermin	 Radioprotector	 Recombinant	N-
terminal	truncated	form	
of	keratinocyte	growth	
factor	(KGF)	

Proliferation	stimulation;	anti-
apoptotic	

C57BL/6J	mice	exposed	to	6	Gy	TBI	
60Co;	delivery	1x/day	for	5	days	pre-
IR;		improved	distribution	of	tight	
junction	proteins	and	epithelial	
barrier	dysfunction	

Phase	I/II/II/IV	
clinical	trials	for	
oral	mucositis	in	
patients	with	
head	and	neck	
cancer;	stem	cell	
transplant	
immune	
recovery	

Singh	2014,	Cai	2013	

Radiation	Countermeasures	for	Skin	

Countermeasure	 Class	 														Group	 Mechanism	 Testing	 Status	 References	

PrC-210	 Radioprotector	 aminothiol	 Antioxidant;	free	radical	scavenger;	
DNA	protector	

Rats	backs	exposed	to	17.3	or	41.7Gy	
137Cs;	4	topical	applications	delivered	
2hr,	1hr,	30	min	and	10	min	pre-IR;	
98%	prevention	of	radiation	
dermatitis	

Clinical	trials	for	
safety	and	
efficacy	for	
radiotherapy	
patients	

Peebles	2012	

FGF-peptide	 Radiomitigator	 Synthetic	binding	
domain	peptide	of	FGF-
2	with	peptidase	
resistant	dimer	form	

Increases	proliferation	of	
keratinocytes;	regulation	of	tight	
junction	proteins	

BALB/C	mice	exposed	to	50Gy	
strontium;	delivered	topically	and	
systemically	daily	for	16	days;	
accelerated	wound	healing	

Research	
ongoing	

Zhang	2011	

Pravastatin	 Radiomitigator	 Statin	 Anti-oxidant;	anti-inflammatory	 Balb/c	mice	exposed	to	45	Gy	TBI	
60Co;	delivery	in	food	daily	post-IR	for	
28	days;	Modulated	cytokines;	limits	
downregulation	of	endothelial	nitric	
oxide	synthase	

FDA	approved	
for	treatment	of	
high	cholesterol	

Holler	2009	

Plerixafor	 Radiomitigator	 bicyclam	compound		 CXCR-4	antagonist;bone	marrow	
stem	cell	mobilizer	

C57BL/6	mice	exposed	to	25-30	Gy	X-
ray;	delivery	of	2	doses	with	2	days	
between	started	either	on	day	0,	4,	7,	
15	or	24	post-IR;	improves	both	acute	
and	late	skin	response	to	radiation	
exposure	

FDA	approval	for	
immobilizing	
stem	cells	in	
non-hodgkin	
lymphoma	and	
multiple	
myeloma	

Kim	2012	

Curcumin Radioprotector 
and mitigator 

Diarylheptanoid; phenol Anti-inflammatory; regulator of 
cytokines; antioxidant 

C3H/HeN mice exposed to 50Gy; 
delivery 5 days pre-IR or 5 days post-
IR or 5 days pre-IR and 5 days post-
IR; reduced acute and chronic skin 
toxicity 

In clinical trials 
for radiation 
dermatitis 

Okunieff 2006, Ryan 
2013 
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Radiation	Countermeasures	for	Lung,	Esophagus,	Oral,	Heart	

Countermeasure	 Class	 														Group	 Mechanism	 Testing	 Status	 References	

Manganese	Superoxide	
Dismutase	(MnSOD)	

Radimitigator	 Protein	 Anti-apoptotic;	metabolizes	
reactive	oxygen	species	

9.5	Gy	TBI;	MnSOD	combined	with	
antioxidant	diet	extends	life	after	ARS	
recovery	

In	clinical	trial	for	
protection	of	
radiation	
induced	
esophagitis	

Borelli	2009	

Rapamycin	 Radioprotector	 Small	molecule	 MTOR	inhibitor;	blocks	radiation	
induced	cellular	senescence	

C3H	mice	exposed	to	30	Gy	
fractionation	(6	Gy	weekly);	delivery	
1x/week;	protects	from	the	loss	of	
proliferative	basal	epithelial	stem	
cells;	reduced	DNA	damage;	did	not	
confer	protection	when	delivered	
with	single	dose	of	15	Gy	

In	clinical	trials	
for	head	and	
neck	cancer;	
NSCLC	

Iglesias-Bartolome	
2012,	Rosen	2015	

Transforming	growth	
Factor	β3	(TGFβ3)	

Radiomitigator	 Protein	 Attenuates	radiation	induced	
pulmonary	function	

Mice	exposed	to	a	single	thoracic	
radiation	of	20Gy;	delivery	weekly;	
decelerated	progress	of	radiation	
induced	fibrosis;	slowed	recruitment	
of	fibrocytes;	Th1	response	
suppressed	

Research	
ongoing	

Xu	2014,	Rosen	2015	

AEOL	10150	 Radioprotector	
and	mitigator	

Metalloporphyrin	 Antioxidant;	free	radical	scavenger	 Rhesus	macaques	exposed	to	11.5	Gy	
of	whole	thorax	lung	irradiation;	
delivery	24	hr	post-IR	daily	for	4	
weeks;	reduced	incidence	of	radiation	
induced	lung	injury	

FDA	Orphan	
Drug	Designation	
for	ARS	

Garofalo	2014	

Palifermin	(Kepivance)	 Radioprotector	 Recombinant	N-
terminal	truncated	form	
of	keratinocyte	growth	
factor	(KGF)	

Proliferation	stimulation;	anti-
apoptotic	

C57BL/6J	mice	exposed	to	6	Gy	TBI	
60Co;	delivery	1x/day	for	5	days	pre-
IR;		recovery	of	mucosa	

Phase	I/II/II/IV	
clinical	trials	for	
oral	mucositis	in	
patients	with	
head	and	neck	
cancer;	stem	cell	
transplant	
immune	
recovery	

Singh	2014,	Cai	2013	

Cerium	oxide	
nanoparticles	

Radioprotector	 Oxide	of	the	rare	earth	
metal	Cerium	

Free	radical	scavenger;	superoxide	
dismutase	2	regulator	

Athymic	nude	mice	exposed	to	30Gy	
fractionation	(5	Gy	weekly);	delivery	
2x/week;	no	visible	pneumonitis	

Research	
ongoing	

Colon	2009,	2010,	
Baker	2013	
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Melatonin	 Radioprotector	 hormone	 Free	radical	scavenging;	singlet	
oxygen	quenching	

Wistar	rats	exposed	to	18Gy	
2.5x2.5cm	area	of	60Co;	delivery	15	
min	pre-IR;	vasculitis	prevented;	
decreased	fibrosis	and	myocyte	
necrosis;	cardioprotective	

Wistar	rats	exposed	to	18Gy	
2.5x2.5cm	area	of	60Co;	delivery	15	
min	pre-IR;	lung	injury	reduced;	
fibrosis	still	present	

Regulated	by	
FDA	as	a	dietary	
supplement	

Gurses	2014,	Serin	
2007,	Tahamtan	
2015	

Radiation	Countermeasures	Tested	in	Space	Radiation	Simulated	Environment	

Countermeasure	 Class	 														Group	 Mechanism	 Testing	 Status	 References	

Selenomethionine	
(SeM)	

Radioprotector	 Dietary	antioxidant	 Maintains	activities	of	the	
antioxidant	enzymes	glutathione	
peroxidase	and	thioredoxin	
reductase;	regulate	expression	of	
genes	involved	in	the	repair	of	
radiation-induced	DNA	damage	

Sprague-Dawley	Rats	exposed	to	1	Gy	
56Fe	ions;	delivery	of	SeM	in	diet	3	
days	pre-IR;	decreased	total	
antioxidant	status	

FDA	approval	as	
dietary	
supplement	

Kennedy	2003	

Eusatron	and	
Ondansetron	(Zofran)	

Anti-Emetic	 5-hydroxytryptamine	
(5-HT3)	

serotonin	subtype-three	receptor	
antagonist	

Ferrets	exposed	to	2Gy	TBI	2-Gy	
doses	of	either	60Co	gamma	or	
neutron:gamma,	mixed-field	
irradiation;	delivery	post-IR;	mitigated	
emesis	

FDA	approved	to	
prevent	nausea	
and	vomiting;	
currently	in	ISS	
medical	kit	

King	1999	

Manganese	Superoxide	
Dismutase	(MnSOD)	

Radiomitigator	 Protein	 Anti-apoptotic;	metabolizes	
reactive	oxygen	species	

CBAxC57Bl6	F1	hybrid	SPF	mice	
exposed	to	4Gy	171MeV	
protons;delivery	6x/day;	accelerated		
recovery	of	thymus	and	spleen	mass	
and	of	the	number	of	leukocytes	in	
mice	peripheral	blood	

In	clinical	trial	for	
protection	of	
radiation	
induced	
esophagitis	

Ambesi-Impiombato	
2014	

Neupogen	 Radiomitigator	 Recombinant	growth	
factor	

Granulocyte	Colony	Stimulating	
Factor	(G-CSF)		

ICR	mice	exposed	to	0.5,	1	or	2	Gy	
137Cs	or	SPE-like	proton;	delivery	1	
day	pre-IR,	immediately	post-IR	or	1	
day	post-IR;	increased	neutrophil	
counts	

FDA	approval	
under	Animal	
Rule	for	ARS	

Romero-Weaver	
2013	



 

46 

Neulasta	(pegylated	
form	of	Neupgen)	

Radiomitigator	 Pegylated	growth	factor	 Granulocyte	Colony	Stimulating	
Factor	(G-CSF)		

Yucatan	mini	pigs	exposed	to	2	Gy	TBI	
SPE-like	protons;	temporarily	
alleviates	proton	radiation-induced	
WBC	loss,	but	has	no	effect	on	altered	
hemostatic	responses	

NHP	studies	
conducted	for	
FDA	approval	to	
treat	ARS	under	
Animal	Rule	

Sanzari	2015	

Cocktail:	SeM,	α-lipoic	
acid,	NAC,	sodium	
ascorbate	and	Vitamin	E	
succinate	

Radioprotector	 Dietary	antioxidant	
cocktail	

Anti-apoptotic;	reactive	oxygen	
species	scavengers	

ICR	mice	exposed	to	1	or	7Gy	TBI	
137Cs;	fed	cocktail	diet	for	7	days	pre-
IR;	second	group	began	cocktail	diet	2	
hr	post-IR;	no	attenuation	of	
lymphopenia;	attenuated	the	
radiation-induced	inflammatory	
response	and	hematopoietic	cell	
death	

ICR	mice	exposed	to	1Gy	proton;	fed	
cocktail	diet	for	7	days	pre-IR;	second	
group	began	cocktail	diet	2	hr	post-IR;	
improved	recovery	of	peripheral	
leukocytes	and	platelets	

Research	
ongoing	

Kennedy	2006,	
Wambi	2008,	2009,	
Sanzari	2011	

Fructose	 Radioprotector	
and	mitigator	

monosaccharide	 Immune	modulation;	oxidative	
protection		

ICR	mice	exposed	to	2	Gy	TBI	137Cs	
gamma	or	SPE-like	proton;	delivery	of	
fructose	daily	for	7	days	pre-IR	
continuing	post-IR	or	daily	for	7	days	
pre-IR;	increase	the	numbers	of	
lymphocytes	

No	known	
studies	ongoing	

Romero-Weaver	
2014	

Enrofloxacin	 Radiomitigator	 broad-spectrum	orally	
available	antibiotic	

Anti-microbial	 C3H/HeNCr	MTV-	mice	exposed	to	
2Gy	137	Cs	or	SPE-like	protons;	
delivery	5	days	post-IR	2x/day	until	
the	end;	enhanced	bacterial	
clearance	and	significantly	decreased	
morbidity	and	mortality	

No	known	
studies	ongoing	

Li	2015	

Mometasone	cream	
(Elecon)	

Radiomitigator	 Corticosteroid	 Anti-inflammatory;	antipruritic;	
vasoconstrictive	

	

Yucatan	mini	pigs	exposed	to	5	or	10	
Gy	TBI	proton;	delivered	topically	
1x/day	and	covered	with	Tegaderm	
post-IR	for	14	days;	mitigated	skin	
toxicity;	decreased	melanosomes,	
necrotic	keratinocytes	and	melanin	
deposition	

FDA	approved	
for	psoriasis	and	
dermatitis	

Kennedy	2014	
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Benefix		 Radiomitigator	 Recombinant	protein	
factor	IX	

Replaces	the	missing	clotting	factor	
IX	that	is	needed	for	effective	
hemostasis	

De-scented	ferrets	exposed	to	1Gy	
TBI	SPE-like	protons;delivery	30	min	
pre-IR;	improved	clotting	values	in	
the	irradiated	ferrets	

FDA	approval	for	
hemophilia	B	

Krigsfeld	2013	

Bowman-Birk	Inhibitors	
(BBI)	

Radioprotector	
and	mitigator	

Protease	inhibitor	 Antioxidant	 CBA/JCR	HSD	exposed	to	0.5Gy	56Fe	
ions	or	3Gy	protons;	delivered	in	food	
3	days	pre-IR	then	daily	post-IR;	
reduced	yields	of	neoplastic	lesions;	
no	impact	on	survival	

FDA	IND	 Kennedy	2006,	2008	

Blueberry	or	Strawberry	
Extracts	

Radioprotector	 Antioxidant	 Free	radical	scavenging,	
polyphenols	

Sprague–Dawley	rats	exposed	to	1.5	
Gy	of	1	GeV/n	56Fe	particles;	delivery	
2%	blueberry	or	strawberry	extracts	2	
months	pre-IR;	2%	strawberry	extract	
can	prevent	the	disruption	of	
responding	on	an	ascending	fixed-
ratio	operant	task	

Research	
ongoing	

Rabin	2005	

Androstenediol	(5-AED)	 Radioprotector	
and	mitigator	

Steroid	 Nuclear	Factor-κβ;	increases	G-CSF	
and	IL-6	

C57BL/6J	mice	exposed	to	3Gy	56Fe;	
delivery	30	min	post-IR;	restored	
hematopoiesis	

FDA	IND	
approval	

Loria	2011	

Dragon’s	Blood	and	
extracts	

Radioprotector	 Resin	from	the	fruit	of	
Daemonorops	draco	
tree	

anti-inflammatory;	anti-apoptotic		 Wistar	rats	exposed	to	2.5Gy	whole	
head	12C6+	heavy	ions;	delivery	1x/day	
for	5	days	pre-IR	then	1x/day	until	
endpoint;	decreased	
malondialdehyde	and	hydrogen	
peroxide	levels;	increased	SOD	
activity	and	glutathione	levels;	
decreased	inflammatory	cytokines	

Herb;	not	
regulated	by	FDA	

Xin	2012	

Vitamin	A	acetate	
(retinol	acetate)	

Radioprotector	 Vitamin	 Anti-inflammatory;	MMP	inhibitor	 Sprague-Dawley	rats	dorsal	skin	
exposed	to	3Gy	56Fe	ions;	delivery	1	
week	in	food	pre-IR	continuing	post-
IR	until	endpoint;	decreased	
expression	of	immune-	and	stress-
response	genes	

FDA	approval	as	
dietary	
supplement	

Zhang	2006	

Fish	oil	and	pectin	 Radioprotector	 Dietary	supplements	 Inhibition	of	Notch	signaling;	anti-
inflammatory	

Sprague–Dawley	rats	exposed	to	1	Gy	
of	1	GeV/n	56Fe	particles;	delivery	of	
fish	oil	and	pectin	in	diet	3	weeks	pre-
IR;	suppressed	antiapoptotic	PPARδ	
levels	

FDA	approval	as	
dietary	
supplements	

Vanamala	2008	
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α-Lipoic	acid		 Radioprotector	
and	mitigator	

Organosulfur	
compound	

lipophilic	antioxidant	 hippocampal	precursor	cells	exposed	
to	1	Gy	of	1	GeV/n	56Fe	particles;	
delivery	1	hr	pre-IR	or	2hr	post-IR;	
reduced	reactive	oxygen	species	

Regulated	by	
FDA	as	a	dietary	
supplement	

Limoli	2007	

Amifostine	(Ethyol)	or	
WR-1065,	WR-2721,	
WR-151,327	

	

Radioprotector	 Aminothiol	 Antioxidant;	free	radical	scavenger;	
DNA	protector	

CHO.	S31WT	clone,	MCF10A,	and	
SPD8	Chinese	hamster	cells	exposed	
to	2	Gy	of	X	rays;	delivery	of	WR-1065	
with	30	min	or	24	hr	incubation	of	
CM;	prevented	hyper-recombination	
and	mutagenesis	

FDA	approval	for	
renal	toxicity	and	
xerostemia	in	
patients	being	
treated	for	
cancer	

Dziegielewski	2010	
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VII. Gaps 
 
Current research is focused on closing the following knowledge gaps: 
 
Acute–1: Determine the dose response for acute effects induced by SPE-like radiation, including 

synergistic effects (focusing on effects that are evident at space-relevant doses) arising from 
other spaceflight factors (microgravity, stress, immune status, bone loss, etc.) that modify 
and/or enhance the biological response. (Note: Acute-1 and Acute-3 were combined into 
Acute-1).     

 
Acute–2: What quantitative procedures or theoretical models are needed to extrapolate 

molecular, cellular, or animal results to predict acute radiation risks in astronauts? How can 
human epidemiology data best support these procedures or models? 

 
Acute–4: What are the probabilities of hereditary, fertility, and sterility effects from space 

radiation? (On hold pending evidence of risk at space relevant exposures) 
 
Acute–5: What are the optimal SPE alert and dosimetry technologies? (Closed. Technology 

maturation transferred to Advanced Exploration Systems)    
 
Acute–6: What are the most effective shielding approaches to mitigate acute radiation risks, how 

do we know, and implement? (Closed. Transferred to Operations) 
    
Acute–7: What are the most effective biomedical or dietary countermeasures to mitigate acute 

radiation risks?         
 
Acute–8: How can probabilistic risk assessment be applied to SPE risk evaluations for EVA, and 

combined EVA+IVA exposures? 
 
The SRPE overlaps with several of the gaps within other HRP Elements as outlined in the HRP 
Integrated Research Plan (IRP).  SRPE works with the other HRP Elements to integrate gaps as 
necessary in accordance with the IRP. 
 
VIII. Conclusion 
 

The biological effects of space radiation, including ARS, are a significant concern for 
manned spaceflight. The primary data that are currently available are derived from analyses of 
medical patients and persons accidentally exposed to high doses of radiation. High doses 
of radiation can induce profound radiation sickness and death. Lower doses of radiation induce 
symptoms that are much milder physiologically but that pose operational risks that may be 
equally serious. Both scenarios have the potential to seriously affect crew health and/or prevent 
the completion of mission objectives.  NASA has established short-term dose limits to prevent 
clinically significant deterministic health effects, including performance degradation in flight. 
Radiation protection must be provided in the form of shielding and operational dosimetry and 
monitoring, as well as biological countermeasures (if an unavoidable exposures is encountered), 
when traveling outside of the protective magnetosphere of Earth.  Predictive models support the 
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evaluation of crew risks, operational requirements and decisions, and the efficient design of 
vehicle shelters to minimize exposures.   

As future NASA missions once again extend beyond LEO and now for longer durations, 
radiobiology research is focused on validating the current PELs, as there is reasonable concern 
that a compromised immune system due to high skin doses from a SPE or due to synergistic 
space flight factors (e.g., microgravity) may lead to increased risk to the BFO. Research data 
specific to the space flight environment are being compiled to quantify the magnitude of this 
increased risk and to develop appropriate predictive models and protection strategies. In addition, 
clinically relevant biological countermeasures or those developed for counterterrorism are being 
identified and validated for spaceflight-relevant exposures, which are characterized by different 
radiation qualities and dose rates than those associated with terrestrial applications.   
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IX.  LIST OF ACRONYMS 
 
ARRBOD Acute Radiation Risk and BRYNTRN Organ Dose 
ARS  Acute Radiation Syndrome 
BFO  Blood Forming Organ  
CAF  Computerized Anatomical Female 
CAM  Computerized Anatomical Male 
CME  Coronal Mass Ejection  
CNS  Central Nervous System 
DNA  DeoxyriboNucleic acid  
DoD  Department of Defense  
ED10  Dose at which 10% of the population receive the effect 
EVA  ExtraVehicular Activity 
F   Solar modulation parameter  
FAX  Female Adult voXel mode 
FW  Fatigue/Weakness  
GCR  Galactic Cosmic Rays  
GI   GastroIntestinal  
GOES  Geostationary Operational Environmental Satellite  
Gy    Gray 
Gy-Eq  Gray-equivalent 
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HSC  Hematopoietic Stem Cell 
HU   Hindlimb Unloaded 
HZE  High Charge and Energy  
ICRP  International Commission on Radiological Protection  
IL       Interleukin 
IRP  Integrated Research Plan  
IVA  IntraVehicular Activity  
LD50  median Lethal Dose 
LET  Linear Energy Transfer 
MAX  Male Adult voXel model  
MeV  Megaelectron Volt 
mGy  milliGray 
mSv   milliSievert 
NAS  National Academy of Sciences  
NCRP  National Council on Radiation Protection and Measurements  
NOAA  National Oceanographic and Atmospheric Agency’s  
NRC  Nuclear Regulatory Commission  
NUREG NUclear REGulations from NRC 
PEL  Permissible Exposure Limit 
RBE  Relative Biological Effectiveness  
SPE  Solar Particle Event  
TGF  Transforming Growth Factor 
TNF  Tumor Necrosis Factor 
UGID  Upper Gastro Intestinal Distress 
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