Last Published:  07/31/19 10:05:33 AM (Central)
Short Title: CBS RR: NHP Model Brain Performance Pathways
Responsible HRP Element: Human Factors and Behavioral Performance
Collaborating Org(s):
Human Health Countermeasures (HHC) Element
Other:
Space Radiation (SR) Element
Funding Status: Planned-Funded - Task expected to be within budget
Procurement Mechanism(s):
Solicited
Aims:
The conceptualization of Brain Performance Pathways (BPP) is based on how the architecture of brain networks at rest guide the connectivity patterns that emerge during the performance of various tasks (i.e., modularity measured during "resting states" predicts working memory performance and stimulus detection in a perceptual task).  Past CNS research focuses on single ions and dosages, identifying differential sensitivity of brain tissue that is more likely to disrupt modular brain organization (i.e., Brain Performance Pathways).
Resources (None Listed)
Mappings
RiskRisk of Acute (In-flight) and Late Central Nervous System Effects from Radiation Exposure
GapCBS-CNS - 1: Are there significant adverse changes in CNS performance in the context and time scale of spaceflight operations? If so, how is significance defined, and which neuropsychological domains are affected? Is there a significant probability that space radiation exposure would result in adverse changes? What are the pathways and mechanisms of change?
GapCBS-CNS - 2: Does space radiation exposure elicit key events in adverse outcome pathways associated with neurological diseases? What are the key events or hallmarks, their time sequence and their associated biomarkers (in-flight or post-flight)?
GapCBS-CNS - 3: How does individual susceptibility including hereditary pre-disposition (e.g. Alzheimer’s, Parkinson’s, apoE allele) and prior CNS injury (e.g. concussion, chronic inflammation or other) alter significant CNS risks? Does individual susceptibility modify possible threshold doses for these risks in a significant way?
GapCBS-CNS - 5: How can new knowledge and data from molecular, cellular, tissue and animal models of acute CNS adverse changes or clinical human data, including altered motor and cognitive function and behavioral changes be used to estimate acute CNS risks to astronauts from GCR and SPE?
GapCBS-CNS - 8: Are there significant CNS risks from combined space radiation and other physiological or space flight factors, e.g., psychological (isolation and confinement), altered gravity (micro-gravity), stress, sleep deficiency, altered circadian rhythms, hypercapnea, altered immune, endocrine and metabolic function, or other?
You are here!TaskResearch Review: NHP Model Brain Performance Pathways

RiskRisk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders
GapCBS-BMed2: We need to identify and validate measures to monitor behavioral health and performance during exploration class missions to determine acceptable thresholds for these measures.
GapCBS-BMed3: We need to identify and quantify the key threats to and promoters of mission relevant behavioral health and performance during autonomous, long duration and/or long distance exploration missions.
GapCBS-CNS - 1: Are there significant adverse changes in CNS performance in the context and time scale of spaceflight operations? If so, how is significance defined, and which neuropsychological domains are affected? Is there a significant probability that space radiation exposure would result in adverse changes? What are the pathways and mechanisms of change?
GapCBS-CNS - 2: Does space radiation exposure elicit key events in adverse outcome pathways associated with neurological diseases? What are the key events or hallmarks, their time sequence and their associated biomarkers (in-flight or post-flight)?
GapCBS-CNS - 3: How does individual susceptibility including hereditary pre-disposition (e.g. Alzheimer’s, Parkinson’s, apoE allele) and prior CNS injury (e.g. concussion, chronic inflammation or other) alter significant CNS risks? Does individual susceptibility modify possible threshold doses for these risks in a significant way?
GapCBS-CNS - 5: How can new knowledge and data from molecular, cellular, tissue and animal models of acute CNS adverse changes or clinical human data, including altered motor and cognitive function and behavioral changes be used to estimate acute CNS risks to astronauts from GCR and SPE?
GapCBS-CNS - 8: Are there significant CNS risks from combined space radiation and other physiological or space flight factors, e.g., psychological (isolation and confinement), altered gravity (micro-gravity), stress, sleep deficiency, altered circadian rhythms, hypercapnea, altered immune, endocrine and metabolic function, or other?
GapCBS-SM2.1: Determine the changes in sensorimotor function over the course of a mission and during recovery after landing.
GapCBS-SM24: Determine if the individual capacity to produce adaptive change (rate and extent) in sensorimotor function to transitions in gravitational environments can be predicted with preflight tests of sensorimotor adaptability.
GapCBS-SM26: Determine if exposure to long-duration spaceflight leads to neural structural alterations and if this remodeling impacts cognitive and functional performance.
You are here!TaskResearch Review: NHP Model Brain Performance Pathways

RiskRisk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight
You are here!TaskResearch Review: NHP Model Brain Performance Pathways